
Randomized Geometric Algorithms

Ken Clarkson

AT&T Bell Labs

Murray Hill, NJ

1

Outline

• Trapezoidal diagrams

• Randomized divide-and-conquer

• Convex hulls

• Randomized incremental algorithms

2

Trapezoidal Diagrams

Given a set S of

n line segments, with

A intersection points,

its TD T (S) has Θ(n+A) regions.

3

Results

Suppose S forms K known chains.

How much work is needed to find T (S),

and how quickly can the diagram be found?

work time/ lgn

Ω(K lgn+A +n) Ω(1)
K lgn+A +n lg∗ n lg lgn lg∗ n CCT

A +n lgn 1 CCT
n lg lgn lg∗ n CCT; simple

n • Cha; simple
n lg∗ n • CTVW,S

n2 1 G,HJW
A lgn +n lg2 n 1 G

A +n lgn 1 red/blue; GSG

4

Randomized divide-and-conquer [CS]:

• take R ⊂ S random of size r;

• compute T (R);

• for T ∈ T (R),

find segments ST meeting it (insertion);

• compute T ∩ T (ST) for T ∈ T (R);

• merge pieces to find T (S);

5

We can use “slow” algorithms

for T (R) and the T ∩ T (ST), since:

Each trapezoid meets

O(n/r) segments, on average, and

O(n/r) log r with high probability.

Moreover, T (R) has

expected O(r +Ar2/n2)

trapezoids.

For parallel work O(A+ n logn),

choose r = n/ logn;

compute T (R) using O(logn) slack [G],

and do O(n/r)2 work [G][HJW]

for subdiagrams.

6

Why O(n/r) log r segments/trapezoid?

T ∈ T (S) is in some T (A) for |A| < 4,

so O(n4) trapezoids to consider.

A trapezoid meeting αn segments

has
(
n−αn−4
r−4

)
/
(
n
r

)
≈ (r/n)4(1− α)r−4

chance to be in T (R).

So the probability that a trapezoid meeting

K(n/r) log r segments

is in T (R) is

O(r4)(1−K(log r)/r)r−4,

less than about eK log r−4 log r = 1/rK−4.

7

Using connectivity

(a.k.a., simple polygon triangulation)

To insert, walk through T (R) and S;

This gives O(n log logn) expected time,

with r = n/ logn and average subproblem size

O(logn).

For O(n log∗ n) work:

For subsets

S1 ⊂ S2 ⊂ · · · ⊂ Slog∗ n = S,

with |S1| = n/ logn, |S2| = n/ log logn,

|Si| = n/ log(i) n,

compute T (Si) using T (Si−1).

8

In parallel, the insertion is done by

many parallel walks through subchains.

The main problem: while every trapezoid of

T (R) meets few segments,

a segment may meet many trapezoids.

How to handle bad segments

that meet Ω(logn) trapezoids?

There are O(n/ logn) bad segments,

on average: to insert them,

compute their intersections

with the visibility edges using algorithm [GSG].

9

One way to show that

each T ∈ T (R) meets < 4n/(r + 1) segments

on average:

pick x ∈ S \R at random.

How many T ∈ T (R) does it meet?

That is, how big is

T (R) \ T (R′), where R′ = R ∪ {x}?

Since |A|+ |B \A| = |B|+ |A \B|,
E|T (R) \ T (R′)|
= E|T (R)| − E|T (R′)|+ E|T (R′) \ T (R)|

10

That is, it’s enough to know the number of

trapezoids created when x is added

= number deleted when x deleted from R′

< 4E|T (R′)|/(r + 1).

since T incident to < 4 segs,

each with prob 1/(r + 1) of being x.

So the number of seg/trap intersections

is expected < 4(n− r)E|T (R′)|/(r + 1).

11

Convex hulls

Given a set

S of

n points in

d dimensions,

maintain the convex hull of R ⊂ S.

We’ll analyze under assumptions

implying R is random:

e.g., add points in random order.

12

When x ∈ S \R is added to R,

edges visible to x

are no longer in the hull.

Visibility testing requires

a line-point orientation test.

13

The algorithm:

maintain a triangulation of convR.

To update

when adding x, and

edge ab is visible to x,

include ∆abx.

14

The (asymptotically) hard problem is

search: find the edges visible to x.

One technique:

walk through the triangulation

from a known point (the origin).

15

Another search scheme:

starting at origin, look at all triangles

whose base edges are visible to x.

Base edge:

When x is added and ∆abx created,

ab is a base edge.

Visibility now means:

edge visible to y when edge created.

(If y added instead of x, get ∆yab.

16

Analysis

...of second scheme,

under random insertions x1, . . . , xi

space: what is E|T |,
the expected number of triangles in

triangulation T ?

time: what is the expected number

of triangles visited for xi?

Note Ri = {x1 . . . , xi}
is a random subset of S,

xi is a random element of Ri and S.

Let

fi = expected number of current hull edges of

Ri.

17

Space:

(Look at general dimension d,

since d = 2 trivial.)

= expected number of

(current and old convex hull) facets.

Count the expected number of facets

created when xj is inserted, for j ≤ i,
and sum over j.

facets created when xj added are

facets incident to xj in convRj.

d vertices/facet, implies

dfj expected vertex-facet incidences, implies

dfj/j facets incident to xj, expected.

So E|T | =
∑
j≤i dfj/j.

18

Time:

Let H = Hi−1 = H(x1, . . . , xi−1)

denote the set of hull facets for insertions

x1, . . . , xi.

(So |H| = |T |.)

Let H ′ = H(xi, x1, . . . , xi−1).

then H \H ′ is

the set of facets of H visible to xi, and search

time is O(d)E|H \H ′|.

Since |H|+ |H ′ \H| = |H ′|+ |H \H ′|,
E|H|+ E|H \H| = E|H ′|+ E|H \H ′|.

the space analysis gives

E|H| =
∑
j≤i−1 dfj/j, E|H ′| =

∑
j≤i dfj/j,

so E|H \H ′| = E|H ′ \H| − dfi/i.

19

We want E|H ′ \H|,
the expected number of facets

incident to xi in the set

H ′ = H(xi, x1, . . . , xi−1).

As in the space bound,

count the number expected when

xj is inserted, and sum over j.

The facets are incident to xi and xj,

and facets of convR′i, R
′
i = {xi, x1, . . . , xj}.

(
d
2

)
vertex pairs/facet implies(

d
2

)
fj+1 pair-facet incidences, implies(

d
2

)
fj+1/

(
j+1

2

)
facets/pair.

20

So

E|H ′ \H| =
∑

j≤i−1

d(d− 1)

(j + 1)j
fj+1

or ∑
j≤i

d(d− 1)

j(j − 1)
fj

The expected number of location tests for xi
is less than twice this.

21

Conclusions

We’ve seen randomization for

• parallel algorithms, divide-and-conquer;

• dynamic algorithms, incremental;

• data structures

• TD, CH/VD, LP, MSTs, BSPTs, NN,

HSE,. . .

22

What about

• determinism; [M,M,M,M,. . .]

• simple O(n) triangulation;

• realistic machine models for parallel algo-

rithms;

• tail estimates;

• self-adjustment;

23

