Randomized Geometric Algorithms

Ken Clarkson AT&T Bell Labs Murray Hill, NJ

Outline

- Trapezoidal diagrams
- Randomized divide-and-conquer
- Convex hulls
- Randomized incremental algorithms

Trapezoidal Diagrams

Given a set S of n line segments, with A intersection points, its TD T(S) has $\Theta(n + A)$ regions.

Results

Suppose S forms K known chains. How much work is needed to find $\mathcal{T}(S)$, and how quickly can the diagram be found?

work time $/ \lg n$

$\Omega(K \log n + A)$	A	+n)	$\Omega(1)$	
$K \lg n + L$	A +	$n \lg^* n$	$\lg \lg n \lg^* n$	ССТ
	A +	$-n \lg n$	1	ССТ
		n	$\lg \lg n \lg^* n$	CCT; simple
		n	•	Cha: simple
	,	$n \lg^* n$	•	CTVW,S
		2	4	
		<i>n</i> ²	T	G, HJVV
$A \lg b$	n + n	$n \lg^2 n$	1	G
	A +	$-n \lg n$	1	red/blue; GSG

Randomized divide-and-conquer [CS]:

- take $R \subset S$ random of size r;
- compute $\mathcal{T}(R)$;
- for $T \in \mathcal{T}(R)$, find segments S_T meeting it (insertion);
- compute $T \cap \mathcal{T}(S_T)$ for $T \in \mathcal{T}(R)$;
- merge pieces to find $\mathcal{T}(S)$;

We can use "slow" algorithms for $\mathcal{T}(R)$ and the $T \cap \mathcal{T}(S_T)$, since:

Each trapezoid meets O(n/r) segments, on average, and $O(n/r) \log r$ with high probability.

Moreover, $\mathcal{T}(R)$ has expected $O(r + Ar^2/n^2)$ trapezoids.

For parallel work $O(A + n \log n)$, choose $r = n/\log n$; compute $\mathcal{T}(R)$ using $O(\log n)$ slack [G], and do $O(n/r)^2$ work [G][HJW] for subdiagrams. Why $O(n/r) \log r$ segments/trapezoid?

 $T \in \mathcal{T}(S)$ is in some $\mathcal{T}(A)$ for |A| < 4, so $O(n^4)$ trapezoids to consider.

A trapezoid meeting αn segments has $\binom{n-\alpha n-4}{r-4} / \binom{n}{r} \approx (r/n)^4 (1-\alpha)^{r-4}$ chance to be in $\mathcal{T}(R)$.

So the probability that a trapezoid meeting $K(n/r) \log r$ segments is in $\mathcal{T}(R)$ is $O(r^4)(1 - K(\log r)/r)^{r-4}$, less than about $e^{K \log r - 4 \log r} = 1/r^{K-4}$.

Using connectivity (a.k.a., simple polygon triangulation)

To insert, walk through $\mathcal{T}(R)$ and S;

This gives $O(n \log \log n)$ expected time, with $r = n/\log n$ and average subproblem size $O(\log n)$.

For $O(n \log^* n)$ work: For subsets $S^1 \subset S^2 \subset \cdots \subset S^{\log^* n} = S$, with $|S^1| = n/\log n$, $|S^2| = n/\log\log n$, $|S^i| = n/\log^{(i)} n$, compute $\mathcal{T}(S^i)$ using $\mathcal{T}(S^{i-1})$. In parallel, the insertion is done by many parallel walks through subchains.

The main problem: while every trapezoid of $\mathcal{T}(R)$ meets few segments,

a segment may meet many trapezoids.

How to handle *bad* segments that meet $\Omega(\log n)$ trapezoids?

There are $O(n/\log n)$ bad segments, on average: to insert them, compute their intersections with the visibility edges using algorithm [GSG]. One way to show that each $T \in \mathcal{T}(R)$ meets < 4n/(r+1) segments on average:

pick $x \in S \setminus R$ at random. How many $T \in \mathcal{T}(R)$ does it meet?

That is, how big is $\mathcal{T}(R) \setminus \mathcal{T}(R')$, where $R' = R \cup \{x\}$?

Since $|A| + |B \setminus A| = |B| + |A \setminus B|$, $E|\mathcal{T}(R) \setminus \mathcal{T}(R')|$ $= E|\mathcal{T}(R)| - E|\mathcal{T}(R')| + E|\mathcal{T}(R') \setminus \mathcal{T}(R)|$ That is, it's enough to know the number of trapezoids created when x is added = number deleted when x deleted from $R' < 4E|\mathcal{T}(R')|/(r+1)$. since T incident to < 4 segs, each with prob 1/(r+1) of being x.

So the number of seg/trap intersections is expected $< 4(n-r)E|\mathcal{T}(R')|/(r+1)$.

Convex hulls

Given a set S of n points in d dimensions, maintain the convex hull of $R \subset S$.

We'll analyze under assumptions implying R is random: e.g., add points in random order.

When $x \in S \setminus R$ is added to R, edges *visible* to xare no longer in the hull.

Visibility testing requires a line-point orientation test. The algorithm: maintain a *triangulation* of conv R.

To update

when adding x, and edge \overline{ab} is visible to x, include Δabx . The (asymptotically) hard problem is **search:** find the edges visible to x.

One technique: walk through the triangulation from a known point (the origin). Another search scheme: starting at origin, look at all triangles whose *base edges* are visible to x.

Base edge:

When x is added and Δabx created, \overline{ab} is a base edge.

Visibility now means: edge visible to y when edge created. (If y added instead of x, get Δyab .

Analysis

...of second scheme, under random insertions x_1, \ldots, x_i

```
space: what is E|\mathcal{T}|,
```

the expected number of triangles in triangulation \mathcal{T} ?

time: what is the expected number of triangles visited for x_i ?

Note $R_i = \{x_1 \dots, x_i\}$ is a random subset of S, x_i is a random element of R_i and S.

Let $f_i =$ expected number of current hull edges of R_i .

Space:

(Look at general dimension d, since d = 2 trivial.)

= expected number of(current and old convex hull) facets.

Count the expected number of facets created when x_j is inserted, for $j \leq i$, and sum over j.

facets created when x_j added are facets incident to x_j in conv R_j .

d vertices/facet, implies df_j expected vertex-facet incidences, implies df_j/j facets incident to x_j , expected.

So $E|\mathcal{T}| = \sum_{j \leq i} df_j/j$.

Time:

Let $H = H_{i-1} = H(x_1, \dots, x_{i-1})$ denote the set of hull facets for insertions x_1, \dots, x_i . (So $|H| = |\mathcal{T}|$.)

Let
$$H' = H(x_i, x_1, ..., x_{i-1}).$$

then $H \setminus H'$ is the set of facets of H visible to x_i , and search time is $O(d)E|H \setminus H'|$.

Since $|H| + |H' \setminus H| = |H'| + |H \setminus H'|$, $E|H| + E|H \setminus H| = E|H'| + E|H \setminus H'|$.

the space analysis gives $E|H| = \sum_{j \le i-1} df_j/j, \ E|H'| = \sum_{j \le i} df_j/j,$ so $E|H \setminus H'| = E|H' \setminus H| - df_i/i.$ We want $E|H' \setminus H|$, the expected number of facets incident to x_i in the set $H' = H(x_i, x_1, \dots, x_{i-1}).$

As in the space bound, count the number expected when x_j is inserted, and sum over j.

The facets are incident to x_i and x_j , and facets of conv R'_i , $R'_i = \{x_i, x_1, \dots, x_j\}$.

$$\begin{pmatrix} d \\ 2 \end{pmatrix}$$
 vertex pairs/facet implies
 $\begin{pmatrix} d \\ 2 \end{pmatrix} f_{j+1}$ pair-facet incidences, implies
 $\begin{pmatrix} d \\ 2 \end{pmatrix} f_{j+1} / \begin{pmatrix} j+1 \\ 2 \end{pmatrix}$ facets/pair.

So

$$E|H' \setminus H| = \sum_{j \le i-1} \frac{d(d-1)}{(j+1)j} f_{j+1}$$

or

$$\sum_{j\leq i}\frac{d(d-1)}{j(j-1)}f_j$$

The expected number of location tests for x_i is less than twice this.

Conclusions

We've seen randomization for

- parallel algorithms, divide-and-conquer;
- dynamic algorithms, incremental;
- data structures
- TD, CH/VD, LP, MSTs, BSPTs, NN, HSE,...

What about

- determinism; [M,M,M,M,...]
- simple O(n) triangulation;
- realistic machine models for parallel algorithms;
- tail estimates;
- self-adjustment;