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Trapezoidal Diagrams

Given a set S of

n line segments, with

A intersection points,

its TD T7(S) has ©(n + A) regions.



Results

Suppose S forms K known chains.
How much work is needed to find T7(S),
and how quickly can the diagram be found?
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Randomized divide-and-conquer [CS]:

e take R C S random of size r;

e compute T(R);

o for T € T(R),
find segments S meeting it (insertion);

e compute TNT(St) for T € T(R);

e merge pieces to find 7(S);



We can use ‘slow” algorithms
for T(R) and the T'NT(S7), since:

Each trapezoid meets
O(n/r) segments, on average, and
O(n/r)logr with high probability.

Moreover, T(R) has
expected O(r + Arz/nQ)
trapezoids.

For parallel work O(A 4+ nlogn),
choose r =n/logn;

compute 7 (R) using O(logn) slack [G],
and do O(n/r)? work [G][HJW]

for subdiagrams.



Why O(n/r)logr segments/trapezoid?

T € T(S) is in some T(A) for |A| < 4,
so O(n*) trapezoids to consider.

A trapezoid meeting an segments

has ("% %) /() = (r/n)*(1 — o) —*
chance to be in T(R).

So the probability that a trapezoid meeting
K(n/r)logr segments

isin T(R) is

O(r*)(1 — K(logr)/r) =4,

less than about eff1097—4logr — 1 /p.K—4



Using connectivity
(a.k.a., simple polygon triangulation)

To insert, walk through 7T (R) and S;

This gives O(nloglogn) expected time,
with r = n/logn and average subproblem size
O(logn).

For O(nlog*n) work:

For subsets

Slcs2c...cslog'n=g

with |S1| =n/logn, |S?| = n/loglogn,
S| = n/log{ n,

compute 7(S%) using T(S*1).



In parallel, the insertion is done by
many parallel walks through subchains.

The main problem: while every trapezoid of
T(R) meets few segments,

a segment may meet many trapezoids.

How to handle bad segments
that meet Q2(logn) trapezoids?

There are O(n/logn) bad segments,

on average: to insert them,

compute their intersections

with the visibility edges using algorithm [GSG].



One way to show that
each T € T(R) meets < 4n/(r + 1) segments
on average:

pick x € S\ R at random.
How many T € T(R) does it meet?

That is, how big is
T(R)\ T(R'), where R\ = RU {x}7

Since |A|+ |[B\ A| = |B| +|A\ B
EIT(R)\ T(R)|
= E|T(R)| - EIT(R)|+ E|T(R)\ T(R)]
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That is, it's enough to know the number of
trapezoids created when z is added

= number deleted when x deleted from R’
< AE|T(RDH|/(r+ 1).

since T' incident to < 4 segs,

each with prob 1/(r + 1) of being =.

So the number of seg/trap intersections
is expected < 4(n —r)E|T(RD|/(r + 1).
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Convex hulls

Given a set

S of

n points in

d dimensions,

maintain the convex hull of R C S.

We'll analyze under assumptions

implying R is random:
e.g., add points in random order.
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When z € S\ R is added to R,
edges visible to x
are no longer in the hull.

Visibility testing requires
a line-point orientation test.
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The algorithm:
maintain a triangulation of conv R.

To update

when adding xz, and
edge ab is visible to z,
include Aabzx.
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The (asymptotically) hard problem is
search: find the edges visible to .

One technique:
walk through the triangulation
from a known point (the origin).
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Another search scheme:
starting at origin, look at all triangles
whose base edges are visible to x.

Base edge:
When z is added and Aabx created,
ab is a base edge.

Visibility now means:
edge visible to y when edge created.
(If y added instead of z, get Ayab.
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Analysis

...0f second scheme,
under random insertions x1,...,x;

space: what is E|T],
the expected number of triangles in
triangulation 77

time: what is the expected number
of triangles visited for z;7?

Note R; = {z1...,2;}
IS @ random subset of §,
x; IS @ random element of R; and S.

Let
fi = expected number of current hull edges of

R;.
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Space:

(Look at general dimension d,
since d = 2 trivial.)

— expected number of
(current and old convex hull) facets.

Count the expected number of facets
created when z; is inserted, for 57 <1,
and sum over j.

facets created when T added are
facets incident to T in conv Rj.

d vertices/facet, implies
df; expected vertex-facet incidences, implies
dfj/j facets incident to T, expected.

So E|T| =< dfj/J
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Time:

Let H = Hi—l = H(azl, ce ,xi_l)
denote the set of hull facets for insertions
LlyeeoyLy-

(So [H[=[T].)
Let H = H(x;,21,...,T;—1).

then H\ H' is
the set of facets of H visible to x;, and search
time is O(d)E|H \ H'|.

Since |H|+ |H'\ H| = |H'| 4+ |H \ H/|,
E|H|+ E|H\ H| = E|H'|+ E|H \ H'|.

the space analysis gives
E\H|=Y,<;—1dfj/j, E\H'| = X ;<;df;/J,
so E|H\ H'| = E|H'\ H| — df;/1.
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We want E|H'\ H],

the expected number of facets
incident to x; in the set

H = H(x;,x1,...,%T;_1).

As in the space bound,
count the number expected when
x; is inserted, and sum over j.

The facets are incident to z; and z;,
and facets of conv R}, R, = {z;,x1,...,2;}.

‘21) vertex pairs/facet implies

(
(g)fj+1 pair-facet incidences, implies
(g)fj+1/<j42'1) facets/pair.
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So

/ _ d(d—1) .
BIHI= 3 Grnit
or
d(d—1) ,
‘727(;‘—1)]"17

The expected number of location tests for x;
IS less than twice this.
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Conclusions

We've seen randomization for

e parallel algorithms, divide-and-conquer;

e dynamic algorithms, incremental;

e data structures

e TD, CH/VD, LP, MSTs, BSPTs, NN,
HSE,. ..
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What about

e determinism; [M,M,M,M,. . .]

e simple O(n) triangulation;

e realistic machine models for parallel algo-
rithms;

e tail estimates;

e self-adjustment;
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