Safe and Effective Determinant Evaluation

Ken Clarkson AT&T Bell Labs Murray Hill, NJ

The problem:

given $n \times n$ matrix A, with b-bit entries, is det A > 0?

comparisons : sorting :: det signs : geometric algorithms Need det with low *relative* error:

In geometric computations, numerical tests yield combinatorial objects. Bad tests can yield wildly wrong results. Prior (theoretical) approaches:

• exact arithmetic

- can be slow: apparently nb bits needed.

- change the algorithm
 - results for few problems
 - hard to do

Approach here:

exact answers for det sign, using both approx. and exact arithmetic.

Result

Let A be an $n \times n$ integer matrix with b-bit entries.

The sign of det A can be computed using arithmetic of precision

 $\beta + b + 1.5n + 1$

in $O(n^3b)/\beta$ time, $\beta > 0$.

Moreover

- $O(n^3)$ time for unit-cost *b*-bit ops;
- running time dependent on $\lg \mathcal{OD} A$;
- $O(n^3)$ time for $\lg \mathcal{OD} A / \beta = O(1)$;

The algorithm is:

- similar to Lovász's for basis reduction;
- solves a simpler problem, and so
- has better bounds.

Orthogonalization

The general approach:

- massage the matrix to good condition
 - preserve the determinant
 - orthogonal matrices
 (pairwise ⊥ columns)
 are perfectly conditioned
- apply Gaussian elimination.

Elementary column ops preserve the det, So: apply these exactly

to make A "nearly" orthogonal.

Gram-Schmidt Orthogonalization

Let
$$a/b \equiv \frac{a \cdot b}{b \cdot b}$$
. Then $b \perp a - (a/b)b$.

Given
$$A = [a_1 \cdots a_n]$$
,
G-S computes orthogonal
 $c_1 \ldots c_n$ so that
span $\{c_1 \ldots c_k\} = span\{a_1 \ldots a_k\}$

That is,

$$a_k = c_k + \sum_{j \le k} (a_k/c_j)c_j$$

for
$$k := 1$$
 upto n do
 $c_k := a_k;$
for $j := k - 1$ downto 1 do $c_k - = c_j(c_k/c_j);$

In approximate arithmetic, lose sign when $||a_k|| \gg ||c_k|| \approx 0$;

Gram-Schmidt for conditioning

Maintain $b_j \approx c_j$ for j < kusing G-S with approximate ops.

Modify a_k using *exact* ops:

for j := k - 1 downto 1 do $a_k - = a_j \lceil a_k / b_j \rfloor$;

Have

$$a_k = c_k + \sum_{j \le k} (a_k/c_j)c_j$$

and $a_k/c_j \leq \approx 1/2$ for j < k.

Not close to orthogonal if $||a_k|| \gg ||c_k||$.

Gram-Schmidt with scaling

```
Small c_k is not a problem for
integer A: scale up a_k exactly
and reduce again.
```

```
while ||b_k|| > ||a_k - b_k|| {
choose integer s;
a_k *= s;
for j := k - 1 downto 1 do a_k -= a_j \lceil a_k / b_j \rfloor;
}
```

Choose s as large as possible, subject to bound on entries of A.

Since the entries of A are **integers**, small magnitude \Rightarrow small representation.

Conclusions

- also useful for:
 - obtaining stable algorithms;
 - equations of hyperplanes;
 - basis reduction?
- novelties:
 - determinants discounted in NA lit;
 - inequality bounds;
 - forward error analysis;

(concluding Conclusions)

- what about:
 - practice?
 - rational matrices?
 - widely varying row sizes?
 - lower bounds for Gaussian elimination?