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Abstract

This paper gives an algorithm for solving linear programming prob-
lems. For a problem with n constraints and d variables, the algorithm
requires an expected

O(d2n) + (log n)O(d)d/2+O(1) + O(d4√n log n)

arithmetic operations, as n → ∞. The constant factors do not depend
on d. Also, an algorithm is given for integer linear programming. Let ϕ
bound the number of bits required to specify the rational numbers defining
an input constraint or the objective function vector. Let n and d be as
before. Then the algorithm requires expected

O(2ddn + 8dd
√

n ln n ln n) + dO(d)ϕ ln n

operations on numbers with dO(1)ϕ bits, as n → ∞, where the constant
factors do not depend on d or ϕ. The expectations are with respect to
the random choices made by the algorithms, and the bounds hold for any
given input. The technique can be extended to other convex program-
ming problems. For example, an algorithm for finding the smallest sphere
enclosing a set of n points in Ed has the same time bound.

1 Introduction

In some applications of linear and quadratic programming, the number of vari-
ables will be small. Such applications include Chebyshev approximation, linear
separability, and the smallest enclosing circle problem. Megiddo [Meg84] gave
an algorithm for linear programming that requires O(22d

n) time, where n is
the number of constraints and d is the number of variables. (Unless other-
wise indicated, we assume unit-cost arithmetic operations.) This time bound
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is optimal with respect to n, and acceptable when d is very small. Vari-
ant algorithms have been found with the slightly better time bound O(3d2

n)
[Cla86, Dye86]. Unfortunately, Megiddo’s approach must take Ω(d!n) time,
since it recursively solves linear programming problems with fewer variables
[Dye86]. Dyer and Frieze [DF89] used random sampling [Cla87, CS89] to ob-
tain a variant of Megiddo’s algorithm, with an expected time bound no bet-
ter than O(d3dn). This paper gives an algorithm requiring expected time
O(d2n) + (log n)O(d)d/2+O(1) + O(d4

√
n log n), as n → ∞, where the constant

factors do not depend on d. The leading term in the dependence on n is O(d2n),
a considerable improvement in d. The second term arises from the solution by
the algorithm of O(d2 log n) “small” linear programs with O(d2) constraints
and d variables. The solution of these linear programming problems with the
simplex algorithm requires O(d)d/2+O(1) time. The third term is discussed in
§3.

H. W. Lenstra was the first to show that integer linear programming prob-
lems can be solved in polynomial time when the number of variables is fixed
[Len83]. His algorithm was subsequently improved ([Kan87, FT87], see also
[Bab85, Fei84]), so that the fastest deterministic algorithm for this problem re-
quires dO(d)nϕ operations on dO(1)ϕ-bit numbers. Here ϕ is the facet complexity
(or row complexity) of the input, the maximum number of bits used to specify an
input inequality constraint. (The value ϕ is required also to be larger than the
number of bits specifying the objective function vector. This condition can be
avoided using the techniques of [FT87].) The new algorithm requires expected

O(2dn + 8d
√

n lnn lnn)

row operations; such an operation is just the evaluation of an input inequality at
a given integral point. The rows have no more than ϕ bits; the integral points
can be specified with 7d3ϕ bits. The algorithm also calls Lenstra’s algorithm
for several “small” integer programming problems. This gives the second term
in the operation bound. When n� d, the new algorithm is substantially faster
than Lenstra’s.

The key idea of the algorithms is random sampling, applied as in [Cla87,
CS89], to quickly throw out redundant constraints.

The next section presents the algorithm. In Section 3, a time bound is given
and proven. The integer programming algorithm is described and analyzed in
§4. The last section contains some concluding remarks.

2 Linear Programming

2.1 The problem

We will consider a specific form of the linear programming problem, and in this
subsection, show that there is no generality lost in assuming that the problem
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has a unique solution.
Suppose a system of linear inequality constraints Ax ≤ b is given, where A

is a given n × d matrix, b is a given n-vector, and x is a d-vector (x1, . . . , xd).
Each inequality in this system defines a closed halfspace H of points that satisfy
that inequality. The collection of these n halfspaces is a set S. The intersection
∩H∈SH is a polyhedral set P(S).

Consider the LP (Linear Programming) problem of determining the maxi-
mum x1 coordinate of points x satisfying all the constraints, or

x∗1 = max{x1 | Ax ≤ b}.

This is equivalent to a general version of the problem, using a change of co-
ordinates. (For background on linear programming, see e.g. [Sch86].) For
arbitrary S, this version of the problem may have no solutions: either P(S)
is empty and the problem is infeasible, or x1 can be arbitrarily large, and the
problem is unbounded. Moreover, the problem may be bounded and feasible,
but with many points in P(S) with the same maximal x1 coordinate. It will be
convenient for describing algorithms to change the problem slightly so that the
LP problems given as input have exactly one solution.

First, the issue of feasibility. As is common, we’ll split the LP problem into
two phases: phase 1, finding a feasible point, and phase 2, finding the solution.
As in [GMW91][§7.9.2] for example, the phase 1 problem can be solved by
solving the LP

max{t | Ax + t1 ≤ b, t ≤ 0},

where 1 is the n-vector of 1’s. This problem is feasible, with a feasible point
readily obtainable. If the optimum t is negative, the original problem is infea-
sible. Otherwise, we have a feasible point for the original problem.

Note that if we have a feasible point x0 ∈ P(S) for an LP problem, the
problem with constraints A(x − x0) ≤ b − Ax0 has the origin 0 as a feasible
point, and its solution y gives a solution y + x0 to the original problem.

These considerations show that an algorithm for solving LP problems that
have 0 ∈ P(S) can be used to solve general LP problems; it will be clear that
there is no asymptotic increase in complexity. Hereafter, we’ll assume that an
input LP problem has 0 ∈ P(S), or equivalently b ≥ 0. This will be useful in
defining the solution to an unbounded problem.

If a given LP problem is bounded, we will use the minimum norm solution,
that is, the point x∗(S) with Euclidean norm ‖x∗(S)‖2 equal to

min{‖x‖2 | x ∈ P∗(S)},

where P∗(S) is the convex polytope P(S) ∩ {x | x1 = x∗1}. A simplex-like
algorithm to find such a solution is given in [GMW81][§5.3.3]. Note that the
minimum-norm solution is unique: if u and v are two distinct minimum-norm
solutions with u · u = v · v = z, then c ≡ (u + v)/2 ∈ P∗(S) and c · c < z.
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Thus we may assume that the given LP problem has 0 ∈ P(S), and if
bounded, has a unique solution. We can define a unique solution even when
the given LP problem is unbounded, so that points with arbitrarily large x1

coordinates are in P(S). Here the solution will be a ray with an endpoint of 0,
in the direction of x∗(Ŝ), where Ŝ is the set of constraints Ax ≤ 0, together
with the constraint x1 = 1. Plainly this problem is bounded and has 0 ∈ P(S);
thus its unique solution gives an unbounded problem a unique solution ray.

Note that a ray x∗(S) ⊂ P(S), since 0 ∈ P(S). Because of this, we will say
that x∗(S) satisfies all the constraints of S. In general, a ray z will be said to
satisfy a constraint halfspace H just when z ⊂ H; otherwise z violates H.

We now have, with no loss of generality, a version of the linear programming
problem that always has a unique optimum solution; finding such a solution
can be done by a simplex or simplex-like algorithm. The algorithms described
below will call such an algorithm for “small” subproblems, and thereby obtain
solution points or rays.

2.2 The algorithm

Actually, four LP algorithms will be mentioned in this section, including the
simplex-like algorithm, called by invoking a function x∗s(S). A recursive algo-
rithm x∗r(S) will be introduced, and an iterative algorithm x∗i (S). Finally, a
mixed algorithm x∗m(S) can be defined: it is a version of the recursive algorithm
that uses the iterative algorithm for the recursive calls. The motivation for the
mixed algorithm is to have a time bound with a leading term O(d2n), while
avoiding the larger number of calls to x∗s of the recursive algorithm.

The recursive algorithm is based on the following facts: the optimum is
unique, and is determined by some d or fewer constraints of S. That is, there
is a set S∗ ⊂ S of size d or less such that x∗(S∗) = x∗(S), so the optimum for
S∗ alone is the same as for S. The constraints in S \ S∗ are redundant, in the
sense that their deletion from S does not affect the optimum.

The main idea of the recursive algorithm is the same as for Megiddo’s al-
gorithm: throw away redundant constraints quickly. The further development
of this idea is very different, however. The algorithm builds a set V ∗ ⊂ S over
several phases. In each phase, a set V ⊂ S \ V ∗ is added to V ∗. The set V
has two important properties: its size is no more than 2

√
n, and it contains a

constraint in S∗. After d + 1 phases, V ∗ contains S∗, and also V ∗ has O(d
√

n)
elements. That is, the algorithm quickly throws away the large set of redun-
dant constraints S \ V ∗. The algorithm proceeds recursively with V ∗, and the
recursion terminates for “small” sets of constraints. For these constraints, the
appropriate optima are found using the simplex algorithm x∗s(S).

The algorithm is given in pseudo-code in Figure 1. The optimum x∗(S) is
computed as follows. Let Cd = 9d2. If n ≤ Cd, then compute the optimum
x∗(S) using the simplex algorithm. If n > Cd, then repeat the following, with
V ∗ initially empty: let R ⊂ S \V ∗ be a random subset of size r = d

√
n, with all
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function x∗r(S : set of halfspaces)
return x∗ : LP optimum;

V ∗ ← φ; Cd ← 9d2;
if n ≤ Cd then return x∗s(S);
repeat

choose R ⊂ S \ V ∗ at random, |R| = r = d
√

n;
x∗ ← x∗r(R ∪ V ∗);
V ← {H ∈ S | x∗ violates H}
if |V | ≤ 2

√
n then V ∗ ← V ∗ ∪ V

until V = φ;
return x∗ ;
end function x∗;

Figure 1: The randomized function x∗r for LP.

subsets of that size equally likely. Let x∗ ← x∗(R∪V ∗), determined recursively,
and let V be the set of constraints violated by x∗. If |V | ≤ 2

√
n, then include V

in V ∗. (The value 2
√

n is twice the mean of |V |, which is ≈ dn/r, as discussed
in §3.) If V is empty, then exit the algorithm, returning x∗ as x∗(S). Otherwise,
stay in the loop.

The iterative algorithm is based on a technique that will be termed iterative
reweighting. (This was inspired by Welzl [Wel88], who applied the idea to half-
space range queries; a similar idea appeared in [Lit87], where it was applied to
learning.) As in the recursive algorithm, a random subset is chosen, and also
the set V of constraints violated by the optimum for that subset. However, we
attach integer weights to the constraints, and choose random subsets by picking
constraints with probabilities proportional to their weights. Since V contains a
constraint in S∗ (if nonempty) we know that the constraints in V are “impor-
tant,” and so increase their weights. This process is iterated, and eventually the
constraints in S∗ have large enough relative weight that the random subset we
choose contains S∗.

The iterative algorithm is given in pseudo-code in Figure 2. Every constraint
H ∈ S has an integer weight wH , initially one, and w(V ) denotes

∑
H∈V wH

for V ⊂ S. The random subset R is chosen without replacement from the
multiset corresponding to S, where the multiplicity of H ∈ S is wH . That is,
we (conceptually) choose H ∈ S with probability w(H)/w(S), then set wH ←
wH − 1, and repeat r times. (The resulting set R may be smaller than r, but
this is actually an advantage.)

As noted above, the function x∗m(S) is simply x∗r(S), with the recursive call
replaced by a call to x∗i (S).
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function x∗i (S : set of halfspaces)
return x∗ : LP optimum;

for H ∈ S do wH ← 1 od; Cd ← 9d2;
if n ≤ Cd then return x∗s(S);
repeat

choose R ⊂ S at random, |R| = r = Cd;
x∗ ← x∗s(R);
V ← {H ∈ S | x∗ violates H}
if w(V ) ≤ 2w(S)/(9d− 1)

then for H ∈ V do wH ← 2wH od;
until V = φ;
return x∗ ;
end function x∗;

Figure 2: The randomized function x∗i for LP.

3 Time complexity analysis

Two lemmas are needed for the time bound. One shows that V contains a
constraint of S∗, and the other shows that V is expected to be small.

Lemma 3.1 In the algorithms of §2, if the set V is nonempty, then it contains
a constraint of S∗.

Note that a constraint of S∗ contained in V is not in V ∗, since the constraints
of V ∗ are satisfied by construction.

Proof. Suppose, in the algorithms, that x∗ is a point, and that on the
contrary, V 6= φ contains no constraints of S∗. Let point x � y if (x1,−‖x‖2) is
lexicographically greater than or equal to (y1,−‖y‖2). We know that x∗ satisfies
all constraints in S∗, and so x∗(S∗) � x∗. Since R ∪ V ∗ ⊂ S, we know that
x∗ � x∗(S) = x∗(S∗), and so x∗ has the same x1 coordinate and norm as x∗(S∗).
There is only one such point in P(S∗), so x∗ = x∗(S∗) = x∗(S), and V must be
empty. A similar argument holds if x∗ is a ray.

The next lemma says that V is expected to be small.

Lemma 3.2 Let V ∗ ⊂ S, and let R ⊂ S \V ∗ be a random subset of size r, with
|S \ V ∗| = n. Let V ⊂ S be the set of constraints violated by x∗(R ∪ V ∗). Then
the expected size of V is no more than d(n− r + 1)/(r − d).

Note that the slightly different meaning of n used here.
This lemma is a corollary of results in [CS89, §4]. For clarity and complete-

ness, the proof of the results in [CS89] will be specialized for this particular case.
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The intuitive idea is that since x∗(R ∪ V ∗) violates no constraints of R ∪ V ∗, it
violates few constraints of S.

After these results were first reported, Seidel found a short and elegant proof.
[Sei91]

Proof. We will assume for the moment that the given problem is nondegen-
erate, in that no d + 1− k hyperplanes meet at a k-flat; in particular, no d + 1
hyperplanes contain a common point.

We begin by putting x∗(R ∪ V ∗) in a larger class of “candidate” optima.
That is, x∗(R ∪ V ∗) is a member of a set

FS = {x∗(T ∪ V ∗) | T ⊂ S \ V ∗}.

We can similarly define

FR = {x∗(T ∪ V ∗) | T ⊂ R}.

Plainly FR ⊂ FS , and x∗(R∪ V ∗) is the unique member of FR that satisfies all
the constraints in R.

For a given x ∈ FS , let |x| denote the number of constraints of S that
it violates, and let Ix be the indicator function for x, so that Ix = 1 when
x = x∗ = x∗(R ∪ V ∗), and Ix = 0 otherwise. That is, Ix is a random variable
whose value depends on the random choice of R. With these definitions, the
expected size of V is

E|V | = E
∑

x∈FS

|x|Ix =
∑

x∈FS

|x|EIx =
∑

x∈FS

|x|Px,

where Px is the probability that x = x∗. What is the value of Px? Since the
subsets of size r are equally likely, Px

(
n
r

)
is the number of subsets of size r that

have x = x∗. We need to count the number of such subsets. For x to be x∗, two
conditions must hold: x must be in FR, and x must satisfy all the constraints
of R. Consider the minimal set T of constraints such that x = x∗(T ∪ V ∗). If
x ∈ FR, then T ⊂ R. Moreover, the nondegeneracy assumption implies that
T is unique, and has no more than d elements. Let ix ≤ d denote the size of
T . Then for x to be x∗, ix given constraints must be in R, and the remaining
r − ix constraints must be from among the n − |x| − ix constraints in S \ V ∗

that neither define x nor are violated by x. We have

Px =
(

n− |x| − ix
r − ix

)/(
n

r

)
.

Now since (
n− |x| − ix

r − ix

)
=

n− |x| − r + 1
r − ix

(
n− |x| − ix
r − ix − 1

)
≤ n− r + 1

r − d

(
n− |x| − ix
r − ix − 1

)
,
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we have

E|V | ≤ n− r + 1
r − d

∑
x∈FS

|x|
(

n− |x| − ix
r − ix − 1

)/(
n

r

)
.

The bound for E|V | follows by showing that the sum is no more than d. By
a counting argument as above, the summand is the probability that x is a
member of FR that violates exactly one constraint of R. By an indicator function
argument as above, the sum is the expected number of x ∈ FR that violate
exactly one constraint of R. However, for any set R, the number of such x is
no more than d: such an x is x∗(R ∪ V ∗ \ {H}), for some constraint H, and
x∗(R ∪ V ∗ \ {H}) = x∗(R ∪ V ∗) unless H is one of the d or fewer constraints
determining x∗(R ∪ V ∗).

Under the nondegeneracy assumption, we have E|V | ≤ d(n− r + 1)/(r− d).
It remains to check that the complexity analysis follows through when the input
set is degenerate. Given a degenerate LP problem, we will show that there is
a “perturbed” version of the problem such that the expected size of the set V
in the perturbed problem is no smaller than in the original. The perturbation
idea goes back to [Cha52], and is equivalent to the lexicographic tie-breaking
used to prevent cycling in the simplex algorithm. The idea is that the vector
b is replaced by the vector b + (ε, ε2, . . . , εn), where ε > 0 is very small. (A
similar perturbation is added to the constraints for Ŝ in the unbounded case.)
The resulting system is nondegenerate, in the sense discussed at the beginning
of the proof. Moreover, each x ∈ FS in the original problem is associated with a
subset of FS′ , where S′ is the corresponding perturbed constraint set. For given
x ∈ FS and T ⊂ S with x = x∗(T ∪ V ∗), the optimum x∗(T ′ ∪ V ∗) is in the
subset associated with x, where T ′ is the perturbed version of T . Also, whenever
x = x∗(R∪V ∗), some x′ associated with x is the optimum for the corresponding
perturbed problem, for sufficiently small ε. The optimum x′ violates at least as
many constraints as x does. Thus the expected size of the set V in the perturbed
problem is no less than that in the original problem, and the bound for E|V |
holds in general.

We can use this lemma to show that progress will be made; that is, say that
an execution of the loop body in x∗r is successful if the test |V | ≤ 2

√
n returns

true, and define an analogous condition for x∗i and x∗m. Then the previous
lemma easily implies the following.

Lemma 3.3 The probability that any given execution of the loop body is suc-
cessful is at least 1/2, and so on average two executions are required to obtain
a successful one.

Proof. From the previous lemma, the expected value of |V | in x∗r is bounded
by d(n− r + 1)/(r − d), which is no more than

√
n for r ≥ d

√
n. By Markov’s

inequality, the probability that |V | exceeds twice its mean is no more than 1/2.
For x∗i , we take V ∗ = φ in the previous lemma, and allow S and R to be

multisets with n = w(S). The result follows analogously.
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Theorem 3.4 Given an LP problem with b ≥ 0, the iterative algorithm x∗i
requires

O(d2n log n) + (d log n)O(d)d/2+O(1),

expected time, as n→∞, where the constant factors do not depend on d.

Proof. We will show that the loop body of the algorithm is executed an
expected O(d log n) times, by showing that w(S∗) grows much faster than w(S),
so that after O(d log n) successful iterations, either V = φ or w(S∗) > w(S), a
contradiction.

Our argument is similar to those in [Wel88, Lit87]. By Lemma 3.1, the set V
must contain a constraint of S∗. Therefore, some H ∈ S∗ is doubled in weight
during a successful execution of the loop body. Let d′ = |S∗|; after kd′ successful
executions of the loop body, we have w(S∗) =

∑
H∈S∗ wH =, where wH = 2iH

for some iH and
∑

H∈S∗ iH ≥ kd′. It easily follows that the minimum possible
value of w(S∗) after kd′ successful iterations is 2kd′.

On the other hand, when the members of V are doubled in weight, the total
increase in w(S) is w(V ) ≤ 2w(S)/(9d−1). That is, upon a successful execution,
the new value of w(S) is no more than (1 + 2/(9d − 1)) times the old value.
After kd′ successful iterations,

w(S) ≤ (1 + 2/(9d− 1))kd′n ≤ e2kd′/(9d−1)n.

When k > ln(n/d′)/(ln 2 − 2d′/(9d − 1)), we have w(S∗) > w(S), so after
kd′ = O(d log n) successful iterations, the set V must be empty. (In fact, r
can be smaller than Cd and give the same, but no better, result.) Hence by
Lemma 3.3, the iterative algorithm stops after an expected O(d log n) iterations.

It remains to bound the time required by the loop body. Vitter [Vit84] gives
an algorithm for random sampling that is readily adapted to obtain weighted
samples like R in O(n) time, using the observation that w(S) = nO(1) during
the algorithm. Plainly, determining V requires O(dn). The simplex algorithm
takes dO(1) time to visit a vertex of P(S), and visits each vertex at most once.
This gives a time bound

(
2Cd

bd/2c
)
dO(1) for simplex, or O(d)d/2+O(1) using Stir-

ling’s approximation. (This also bounds the time for finding the optimum with
smallest norm.) Therefore the loop body requires O(dn) + O(d)d/2+O(1), and
the bound follows.

Theorem 3.5 Algorithm x∗m requires

O(d2n) + (d2 log n)O(d)d/2+O(1) + O(d4
√

n log n)

expected time, as n→∞, where the constant factors do not depend on d.

Proof. We will continue to assume that b > 0 until the end of the proof.
The set V ∗ grows by at most 2

√
n at each successful iteration, with at most

d + 1 successful iterations needed. The maximum size of R ∪ V ∗ is therefore
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√
Cdn, where Cd is 9d2. Let Tm(n) be the expected time required by x∗m for a

problem with n constraints (and d variables), and similarly define Ti(n). Since
the probability that an iteration is successful is at least 1/2, the time required
to find acceptably small sets V is bounded by 2Ti(

√
Cdn), for a total of 2(d +

1)Ti(
√

Cdn) over all phases. The time required to test that a given constraint is
satisfied by a computed optimum is O(d), for a total of O(d2n) over all phases.
For n > Cd, the expected time Tm(n) is bounded by

Tm(n) ≤ 2(d + 1)Ti(
√

Cdn) + O(d2n),

where the constant does not depend on d. The bound follows.

4 Integer linear programming

4.1 The problem

This section gives an algorithm for finding an optimum for the integer linear
programming (ILP) problem

max{cx | Ax ≤ b;x integral},

where A is an n × d matrix, b an n-vector and c a d-vector, and the entries of
A, b, and c are rational numbers. As before S is the set of constraint halfspaces
associated with A. In this section, x∗(S) will denote the solution to the above
problem (not the corresponding LP relaxation); as discussed below, we can
assume that the optimum is bounded; it will be convenient here to assume that
x∗(S) is the lexicographically maximum point achieving the optimum value.
This last condition assures that x∗(S) is unique.

The optimum can be forced to be bounded by introducing new constraints.
Such constraints should not change a finite optimum, however. We can use the
proof of [Sch86, Cor. 17.1c] here, which shows that if ϕ is the facet complexity of
P(S), and the ILP has a finite optimum, then every coordinate of that optimum
has size no more than Kd = 2d2ϕ + dlog2(n + 1)e+ 3. We may add to S the set
Ŝ of 2d constraints

|xi| ≤ 2Kd + 1,

for 1 ≤ i ≤ d, to obtain a bounded polytope P(S ∪ Ŝ) with the same optimum
if that optimum is finite. Moreover, no integral point in P(S ∪ Ŝ) has size more
than 7d3ϕ, attained when d of the new constraints are tight.

Thus we may assume that the optimum solution to the ILP is bounded;
when determining x∗(R) for R ⊂ S, we can make the same assumption by
finding x∗(R∪ Ŝ) instead. Hereafter in this section x∗(R) will denote x∗(R∪ Ŝ).
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4.2 The algorithm

The starting point for the new algorithm for ILP is the following lemma due to
Bell and to Scarf ([Bel77, Sca77]; see also [Sch86]).

Lemma 4.1 There is a set S∗ ⊂ S with |S∗| ≤ 2d−1 and with x∗(S) = x∗(S∗).

That is, as with LP, we have the optimum determined by a “small” set. The
ILP algorithms are simply variations on the LP algorithms, with sample sizes
using 2d rather than d, and using Lenstra’s algorithm in the base case. Another
necessary modification is due to the fact that S∗ is not necessarily unique. As a
result, we will use the following bound, giving weaker results than Lemma 3.2.
This bound is a corollary of the results in [Cla87]. (See also [HW87, Spe74].)

Lemma 4.2 Let V ∗ ⊂ S, and let R ⊂ S \ V ∗ be a random subset of size
r > 2d+1, with |S \ V ∗| = n. Let V ⊂ S be the set of constraints violated by
x∗(R ∪ V ∗). Then with probability 1/2, |V | ≤ 2d+1n(ln r)/r.

Proof. We will assume that V ∗ is empty; the case where V ∗ is not empty
can be handled similarly. Let FS and FR be defined analogously to those in
Lemma 3.2. Let m = 2d − 1. By the previous lemma, x∗(R) = x∗(R′) for some
R′ ⊂ R with |R′| ≤ m. For k < n, the probability that |x∗(R)| > k is bounded
above by ∑

0≤i≤m

∑
R′⊂S,|R′|=i
|x∗(R′)|>k

Prob{x∗(R′) = x∗(R)},

since the probability of the union of a set of events is no more than the sum of the
probabilities of those events. The probability that R contains given i-element
R′ ⊂ S, and that R contains none of the |x∗(R′)| > k constraints violated by
x∗(R′), is no more than

(
n−i−k

r−i

)
/
(
n
r

)
. The number of i-element R′ ⊂ S with

|x∗(R′)| > k is of course no more than
(
n
i

)
. Therefore Prob{|x∗(R)| > k} is no

more than ∑
0≤i≤m

(
n

i

)(
n− i− k

r − i

)/(
n

r

)
,

which is no more than

(m + 1)
(

r

m

)(
n−m− k

r −m

)/(
n−m

r −m

)
,

Using elementary bounds, this quantity is less than 1/2 for k ≥ 2d+1n(ln r)/r.

The modifications for the ILP algorithms are as follows: for the recur-
sive algorithm, put the sample size at 2d

√
2n lnn, and use Lenstra’s algorithm

when n ≤ 22d+5d. With probability 1/2, the set V will have no more than
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√
2n lnn constraints; require this for a successful iteration. For the iterative

algorithm, use a sample size of 22d+4(2d + 4), with a corresponding |V | bound
of n(ln 2)/2d+3.

The analysis of the ILP mixed algorithm is similar to that for the corre-
sponding LP algorithm: the top level does expected 2d+1n row operations, and
generates 2d+1 expected subproblems each with no more than 2d+1

√
2n lnn

constraints. Solution of each subproblem requires expected 2d+1 lnn iterations,
each iteration requiring 2d+1

√
2n lnn row operations and a call to Lenstra’s

algorithm with the same number of constraints. Using the fact that the row
operations are on vectors of size O(d3)ϕ, and the bounds from [FT87], we have
the following theorem.

Theorem 4.3 The ILP algorithm x∗m requires expected

O(2dn + 8d
√

n lnn lnn)

row operations on O(d3ϕ)-bit vectors, and

dO(d)ϕ lnn

expected operations on O(dO(1)ϕ)-bit numbers, as n → ∞, where the constant
factors do not depend on d or ϕ.

5 Concluding remarks

These ideas should be applicable to other convex programming problems. For
example, the problem of finding the smallest sphere enclosing a set of points
in Ed is amenable to this approach, and resulting algorithm has the same time
bound as the LP algorithm given. The weighted Euclidean one-center problem
and various L1 approximation problems should also be amenable.

These results may be useful in obtaining insight into the observed time com-
plexity of various algorithms and heuristics for convex programming problems.

For n � d, the best previous result is Khachian’s algorithm[Kha80], re-
quiring O(nd3ϕ) operations on numbers with O(d2)ϕ bits. By application of
Khachian’s algorithm instead of simplex, an algorithm is obtained that requires
O(nd2 log n + d6ϕ log n) expected operations. This is an improvement when
d = o((n/ log n)1/3). (Khachian’s algorithm can be adapted to the problem of
finding the shortest vector in a convex set, and so minimum norm solutions can
be found with it.)

It is worth noting that a variant of the iterative ILP algorithm may be useful
in the (common) situation where K = |S∗| � 2d; here a sample size O(2dKd)
will do, with fewer iterations to converge on S∗. Since K is unknown, attempts
with K considered to be d, 2d, 4d . . . , should be made, giving a time bound of

O(Kd2n log n) + K2dO(d)ϕ log n

12



expected operations on dO(1)ϕ-bit numbers.
Several developments have occurred since the conference version of this paper

appeared. Adler and Shamir have shown that these ideas can be applied to
general convex programming.[AS90] Chazelle and Matoušek have derandomized
the recursive algorithm, obtaining a deterministic algorithm requiring dO(d)n
time.[CM93] Alon and Megiddo have applied and extended the ideas of this
paper to a parallel setting.[AM90]

Seidel gave a different randomized algorithm[Sei91], requiring O(d!n) ex-
pected time, with a much simpler analysis; Sharir and Welzl found a variant
of Seidel’s algorithm requiring time subexponential in d. Their algorithm is a
randomized instance of the simplex algorithm.[MSW92] Kalai was the first to
find a subexponential simplex algorithm.[Kal92] Problem instances have long
been known for which versions of the simplex algorithm require at least 2d

operations.[KM72] These results cast new light on the complexity of the sim-
plex algorithm, and on the possibility that linear programming problems can be
solved in “strongly polynomial” time; an algorithm with such a bound would
need (nd)O(1) operations, with the number of operations independent of the size
of the numbers specifying a problem instance.

Acknowledgements. I thank David Gay and Margaret Wright for sug-
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[MSW92] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for
linear programming. In Proc. 8th Annu. ACM Sympos. Comput.
Geom., pages 1–8, 1992.

[Sca77] H. E. Scarf. An observation on the stucture of production sets with
indivisibilities. In Proceedings of the National Academy of Sciences
of the United States of America, volume 74, pages 3637–3641, 1977.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley,
New York, 1986.

[Sei91] R. Seidel. Small-dimensional linear programming and convex hulls
made easy. Discrete and Computational Geometry, pages 423–433,
1991.

[Spe74] J. Spencer. Puncture sets. J. Combinatorial Theory A, 17:329–336,
1974.

[Vit84] J. S. Vitter. Faster methods for random sampling. Communications
of the ACM, pages 703–718, 1984.

[Wel88] E. Welzl. Partition trees for triangle counting and other range search-
ing problems. In Proc. Fourth ACM Symp. on Comp. Geometry,
pages 23–33, 1988.

15


