
Solution of Linear Systems Using Randomized

Rounding

Kenneth L. Clarkson
Bell Laboratories

Murray Hill, New Jersey 07974
e-mail: clarkson@research.bell-labs.com

March 18, 2003

Abstract

This paper gives an algorithm for solving linear systems, using a ran-
domized version of incomplete LU factorization together with iterative im-
provement. The factorization uses Gaussian elimination with partial piv-
oting, and preserves sparsity during factorization by randomized rounding
of the entries. The resulting approximate factorization is then applied to
estimate the solution. This simple technique, combined with iterative im-
provement, is demonstrated to be effective for a range of linear systems.
When applied to medium-sized sample matrices for PDEs, the algorithm
is qualitatively like multigrid: the work per iteration is typically linear in
the order of the matrix, and the number of iterations to achieve a small
residual is typically on the order of fifteen to twenty. The technique is
also tested for a sample of asymmetric matrices from the Matrix Market,
and is found to have similar behavior for many of them.

1 Introduction

This paper gives an algorithm for solving the linear system Ax = b, where A
is an n × n real matrix, and b is a real n-vector. The algorithm does not use
any special information or structure in the matrix; this includes even structural
symmetry.

The algorithm uses a form of incomplete LU factorization: it approximates
Gaussian elimination with partial pivoting, and does not retain all nonzero en-
tries of the full factorization. This approximation involves randomized rounding:
as A is factored, an entry aij of A is rounded using a random variable, and set to
a nonzero value with a probability proportional to its magnitude |aij |. Because
of the rounding, the number of entries per row is bounded by a selected value K.
Using this approximate factorization, the solution is estimated by backsolving.

1

This scheme is incorporated into iterative improvement, solving for a cor-
rection by using the residual as the new b-vector. At each iteration, a new
factorization is computed: this factorization will be distinct for each iteration,
because of the random choices made in the algorithm. If a new factorization is
not done at each iteration, the algorithm fails: iterative improvement using a
fixed instance of one of these factorizations yields little change in the residual
after a few iterations. New factorizations are therefore necessary and sufficient
for iterative improvement to rapidly yield a solution. This property seems to be
a distinctive characteristic of the randomized method, which otherwise seems
similar in flavor to an algebraic multigrid method[Wag99], or to the multi-level
graph methods of Bank and Smith[BS02, BS99].

The next section gives the algorithm; this is followed by experimental results,
and some concluding remarks.

2 The Algorithm

The next subsection gives the basic algorithm, and following subsections give
some refinements.

2.1 The ILU-R(K) algorithm

The idea of the factorization method is to perform elimination steps row by
row as usual, but to preserve sparsity by rounding the entries of a resulting row
using randomization. This is done in such a way that the expected value of an
entry of the rounded row is equal to the original value of the entry, but the total
number of non-zero entries is bounded.

Specifically, the rounding procedure is as follows. Gaussian elimination is
being done, to create an upper triangular matrix. To round entries aik of row
ai to entries a′ik, the estimates a′ik are all initialized to zero. Let si denote∑

1≤m≤n |aim|, the `1 norm of ai. For K trials, an integer k is chosen with
probability |aik|/si, and a′ik is incremented by sign(aik)si/K.

It is easy to show that the expected value Ea′ik = aik.
Running time. With the use of hashing, the updating of entries can be done

in expected (and observed) O(1) time.
In the K or K2 trials for rounding, the indices k are chosen by first making

an array of partial sums
cj ≡

∑
k≤j

|aik|/si,

for j = 1 . . .m. For each trial, we generate a U [0, 1] random value v and find
the smallest k such that v ≤ ck. This generates the index k with probability
proportional to |aik|/si, as desired. The worst-case time for each trial could be
accelerated by using binary search on the partial sums, but this was not done,
as the time for the step is relatively small anyway.

2

2.2 The ILU-R(K,K2) algorithm

For some problems, a more complicated procedure may be useful: here the elim-
ination step itself uses randomized rounding, allowing K2 additional nonzeros.

The elimination step, for using row ai to reduce the aji entry of aj to zero,
is as follows. Perform the following K2 times: pick an integer k in the range
i + 1 . . . n, where k is chosen with probability

|aik|/si,

and decrement ajk by si sign(aik)aji/aiiK2. This yields the appropriate expec-
tation, for any given such operation.

Note that ILU -R(n, 1) preserves the sparsity of each row. Some linear sys-
tems can be solved by our method with K2 = 4, sometimes less. However, in
general, choosing K2 = K/2 or K2 = K seems most effective, and the experi-
ments below were done under the latter condition.

2.3 A refinement in rounding

Suppose row ai is being rounded, and some entry is much larger in absolute
value than si/K; such an entry is likely to yield at least a nonzero coefficient in
the randomized-rounded version of row ai. For such an entry, it would not be
wasteful of space to simply include it in the rounded version of the row. (Here
the assumption is that a rounded entry is represented using in the same way
as an unrounded entry, for example using a double. This is somewhat wasteful
of space, and one could alternatively represent the rounded entries in a more
compact way, but such a scheme was not persued here.)

Having set aside such an entry, there remain K−1 rounded entries to choose,
in a row with a smaller sum of absolute values s′i. But now, what if some entry
is larger than s′i/(K − 1)? It is again likely to yield a coefficient in the rounded
version of row i.

These considerations suggest the following procedure: sort the list of m
entries in the row in decreasing order of absolute value; let rg be the g’th entry
of this ordered list, for g = 1 . . .m. Walk down the list, until an entry rĝ is
found such that

(K − ĝ)|rĝ| ≤
∑

ĝ≤`≤m

|r`|. (1)

If no such entry exists, set ĝ to m+1. Apply the randomized rounding procedure
only to the entries in the list from ĝ up to m.

Note that if m ≤ K, then this procedure finds ĝ = m + 1, and so does
nothing to the row. On the other hand, if there are more than K entries, and
the entries are all equal, then randomized rounding is applied to all entries.

It is tempting to consider the deterministic procedure of simply “rounding”
by using the largest K entries (in absolute value). Such a deterministic scheme
yields only one approximate LU factorization, however, and not a family of
them. The latter property is helpful for the algorithm given here.

3

It isn’t actually necessary to sort the list of entries in the row: a procedure
akin to Hoare’s QUICKMEDIAN can be done. Briefly, we pick an entry r at
random in the list, and partition the list with those entries larger (in magnitude)
than r to the left, and those smaller than r to the right. Next we check if criterion
1 is satisfied by r. If so, we do a similar procedure for the elements to the left
of r, and otherwise we look to the right of r. In the former case, we retain the
sum

∑
|r′|≤|r| |r′| for use in checking entries in the recursion. This procedure

succeeds because if rg does not satisfy the criterion (1), then neither does any
g′ ≤ g, as can be shown by induction.

The expected time for this procedure satisfies the same recurrence as for
QUICKMEDIAN, and hence is O(m).

2.4 Choosing K and K2

The running time of the algorithm depends critically on the rounding parameters
K and K2; as will be shown experimentally below, if K or K2 are too small,
then no improvement is obtained, but if K and K2 are sufficiently large, then
the residual is reduced in `2 norm at each step by a factor comfortably larger
than 1, such as 2. That is, there are thresholds for K and K2, and when
these thresholds are exceeded, convergence is relatively rapid. These thresholds
depend on A and b; they seem to depend in general only weakly on n, however,
for a family of matrices arising from the same problem.

Due to the critical dependence on the values of K and K2, the algorithm
attempts to choose them so as to minimize the overall running time. In the
experiments below, the value of K2 is initially set to half the value of K, unless
several successive increases in K have failed to improve the performance of the
iterations; thereafter K2 is maintained to be equal to K.

No rounding is done until the total number of entries in the factorization
is at least 1.5 times the number of entries in the original matrix, and the total
number of entries is also at least Kn: that is, K and K2 are effectively n until
the factors are sufficiently dense.

The algorithm tries to find an effective value for K, as follows: the history of
the iterations is maintained, and for each iteration, the time taken for the itera-
tion, the value of K, and the improvement are recorded. (Here the improvement
is the reduction in the `2 norm of the residual.) One the K values that were
used maximizes the ratio of improvement to iteration time. Such a choice would
minimize the overall time of the algorithm. If that best K is not adequate, so
that the improvement and the improvement/time ratio are each below some
pre-set thresholds, then a new value of K is tried, equal to approximately

√
2

times the maximum K tried so far.
Thus, the algorithm searches for the best value K; as seen below, for some

matrices, that search can simply yield K = n, and the algorithm reduces to full
factorization.

4

2.5 Running time

The performance of the algorithm is a combination of several factors: the num-
ber of iterations needed to obtain a sufficiently small residual, the values K and
K2 needed for such iterations, and the dependence of the running time on n, K
and K2.

The observed running time for each iteration was proportional to KK2n. It
is possible to concoct a matrix and elimination order for which the rows all have
two nonzero entries, and yet the time needed is Ω(n2). On the other hand, if
the elimination order is random, and the rounding procedures are done with the
binary search procedure discussed in §2.2, and hashing is used to update coef-
ficient values, then the expected running time per iteration is O(nKK2 log K),
or linear in n. We did not implement the random elimination order, however.

3 Experimental Results

Three sets of matrices were considered:

BS1 Families of matrices based on a discretization of the Laplace equation, on
a regular grid;

BS2 Families based on discretizations of PDEs, on irregular grids, constructed
adaptively;

MM A collection of matrices from the “Matrix Market”[Mat], choosing square
matrices with real entries, and favoring asymmetric matrices, especially
structurally asymmetric matrices (with an asymmetric pattern of non-zero
entries).

The first two families were used by Bank and Smith in evaluating their
ILU -MG multigraph algorithms.[BS99] (The bs2 matrices were supplied to
the author by Kent Smith.) We refer the reader to their article for a detailed
description of these matrices. The bs1 matrices also include a family of matrices
related to Ising models.

In the experiments, the stopping criterion was that the residual Euclidean
norm be more than 10−6 times the norm of b, the right hand side. The right
hand side was typically chosen by making setting one entry, chosen at random,
to one, with the remaining entries zero. The columns of the matrices were
randomly shuffled on input, and partial pivoting was used.

Some basic experimental results for these families are tabulated below in
Figures 1, 5, and 8. In these tables,

• “n” is the order of the matrix;

• “# its” is the number of iterations performed;

• Ê is the average number of entries per row, for the value K̂ of K at which
the largest proportion of the total gain was achieved. When K and K2

5

were found to be so large that the procedure is the same as Gaussian
elimination with partial pivoting, and this procedure failed, this condition
is indicated by a table entry of “∗∗”.

• “gain” is the average gain of the iterations for which the value of K used
was K̂. Here gain is the logarithm (base 2) of the reduction by the iteration
of the Euclidean norm of the residual. The table entry “*” indicates that
the procedure failed, usually by running of out storage.

• “gain/t” is the average gain per unit CPU time of the iterations using
K = K̂, multiplied by n. As for gain, the entry “*” indicates failure.

• “E, GE” in Figure 8 indicates the average number of entries per row when
Gaussian elimination using partial pivoting was applied to the matrix.
Failure of the procedure is indicated by a table entry of “∗∗”.

• “speedup” in Figure 8 indicates the ratio of the total running time of full
Gaussian elimination to that of the new algorithm. A blank entry means
that both algorithms failed; an entry of “*” means that the full Gaussian
elimination failed, and the new algorithm did not.

3.1 Results for the BS1 matrices

Results for the BS1 matrices are shown in Figure 1.
The matrices are loosely based on a discretization of the Laplace equation

for a regular grid in two dimensions: the matrices A-X-0.dat have order n = X2,
are symmetric, have aii = 4 for all i, and have above-diagonal non-zero entries
ai,i+1 = −1 for i = 1 . . . n − 1 and i 6= 0 mod X. Also, ai,i+X = −1 for i =
1 . . . N − X. The matrices A-X-1.dat have the same non-zero entries, except
that they are positive.

The matrices A-X-2.dat have the same non-zero entries, except that the
non-zero non-diagonal entries (the “1”s) are given their signs at random, equally
likely to be +1 or −1; this is done symmetrically. Such matrices are related to
Ising models. Finally, the A-X-3.dat matrices have similarly random entries,
but asymmetric: the random choices for the off-diagonal entries are done inde-
pendently.

The value of Ê does increase somewhat with n, and especially for the
A-X-1.dat family, but this dependence seems relatively mild, especially for the
A-X-2.dat family.

Figure 2 shows the behavior of the algorithm over its improvement iterations,
for matrix A-80-0. The solid line is the gain, and the dashed line is the entries
per row, E.

A somewhat-worse result shown in Figure 3 for matrix A-80-1.
In Figure 4, that gain and gain-per-time are shown as functions of K, with

the gain again shown as a solid line, while the gain per unit time is shown as
a dashed line. The low gain for K = 20 is apparently transient, or due to a
random effect.

6

matrix n # its Ê gain gain/time
A-10-0 100 17 6.5 1.2 122.3
A-20-0 400 19 8.4 1.2 446.5
A-40-0 1600 32 7.8 0.6 678
A-80-0 6400 19 14 1.4 444.6
A-160-0 25600 21 14.1 1.1 76.7
A-320-0 102400 4 10.6 * *
A-10-1 100 15 7.6 1.7 174.6
A-20-1 400 18 11.2 1.4 528.9
A-40-1 1600 23 19.8 1.4 688.3
A-80-1 6400 14 39.7 3.7 357.2
A-160-1 25600 13 39.9 2.6 50.3
A-320-1 102400 3 14 * *
A-10-2 100 12 6.6 1.8 179
A-20-2 400 18 8 1.9 721.9
A-40-2 1600 16 7.8 1.3 1418.1
A-80-2 6400 17 7.9 1.2 559.4
A-160-2 25600 13 8 1.6 175.7
A-320-2 102400 11 7.4 1.9 50.7
A-10-3 100 14 15.3 4.5 453.4
A-20-3 400 11 7.2 1.9 695.4
A-40-3 1600 7 7.8 3.1 3566.1
A-80-3 6400 7 7.9 3 1312.2
A-160-3 25600 8 8 2.6 271.6
A-320-3 102400 8 8 2.7 67.6

Figure 1: Basic results for data set BS1.

7

0 5 10 15 20
0

0.5

1

1.5

8

10

12

14

Iteration

EGain

Figure 2: A-80-0, order 6400

2 4 6 8 10 12 14

0

1

2

3

4

10

20

30

40

Iteration

EGain

Figure 3: A-80-1, order 640

8

10 20 30 40

0

1

2

3

0

100

200

300

K

Gain/TimeGain

Figure 4: A-80-1

3.2 The BS2 matrices

The matrices were all derived from the discretization of partial differential equa-
tions on nonuniform adaptive grids, and have orders n = 5000, 20000 and 80000
for each problem domain.

3.2.1 Problem domains

Superior. Here the problem is the Poisson equation ∆u = −1, on a domain
shaped like Lake Superior.

Hole. A more complicated system with discontinuous, anisotropic coeffi-
cients.

Texas. The indefinite Helmholtz equation −∆u − 2u = 1 on a domain
shaped like the state of Texas.

UCSD. A constant-coefficient convection-diffusion equation

−∇ · (∇+ βu) = 1,

with β = (0, 105)T , on a domain in the shape of the UCSD logo.
jcn1-3 and jcn4-6. Two variants of a current continuity equation for

semiconductor device modeling. The equation has the form

−∇ · (∇+ βu) = 0.

Solutions vary exponentially in magnitude across the domain. In the matrices
jcn1, jcn2, and jcn3, the convective term is such that the device is forward
biased, and in the remaining matrices, the sign of the convective term is reversed.

9

matrix n # its Ê gain gain/time
hole1 5000 12 96.8 4.8 56.7
hole2 20000 14 138 4.5 17.5
hole3 80000 5 35 * *
jcn1 5000 28 10.7 0.6 121
jcn2 20000 29 10.9 0.6 27.8
jcn3 80000 24 35 1.5 8
jcn4 5000 19 19 1.2 173.3
jcn5 20000 24 25.9 1.1 36.1
jcn6 80000 18 35 1.5 7.6
sup1 5000 11 22.8 2.7 195.1
sup2 20000 11 46.9 3.9 53.6
sup3 80000 5 35 * *
tex1 5000 14 96.2 3.2 37.9
tex2 20000 13 138.2 4.5 17.6
tex3 80000 5 35 * *
ucsd1 5000 10 7.8 2.2 431.4
ucsd2 20000 12 8.8 1.7 79.3
ucsd3 80000 11 9.3 1.9 18.1

Figure 5: Basic results for data set BS2.

3.2.2 Results

Some basic experimental results are shown in Figure 5. Unfortunately, storage
was insufficient to solve some of the larger systems, but again, a relatively mild
dependence of Ê on n is seen.

Figures 6 and 7 show a threshold for the gain as a function of K. (Again,
the axis labels on the left in these figures is for the solid line, while the axis
labels on the right are for the dashed line.) The Texas family of matrices had
the highest such threshold in this set, just as this family was the hardest for
Bank and Smith’s ILU-MG algorithm to solve.[BS99]

3.3 The MM matrices

As mentioned above, these matrices were taken from the “Matrix Market”[Mat],
which includes the Harwell-Boeing set, and a representative matrix was chosen
from nearly every set that included real square matrices of large bandwidth.

3.3.1 Results

Some basic experimental results are shown in Figure 8. In general, these matri-
ces are smaller than would be ideal for the experiments here. Some matrices,
such as fidapm07, fs 760 3, and mbeacxc, would appear to be singular. Other

10

2 4 6 8 10 12

0

1

2

3

4

5

20

40

60

80

100

120

140

Iteration

EGain

Figure 6: tex2, order 20000

0 20 40 60 80 100 120 140

0

1

2

3

4

0

5

10

15

K

Gain/TimeGain

Figure 7: tex2

11

matrix n # its Ê gain gain/time E, full GE speedup
1138 bus 1138 19 37.2 20.3 5771.7 29 0.02
494 bus 494 8 10.7 30.8 15209.5 10 0.01
add20 2395 6 8.2 3.6 2900 392 5.75
add32 4960 6 5.5 3.7 2122.6 18 0.17

bfw782a 782 23 37.9 2.4 729.9 237 0.5
bp 1400 822 5 25.6 35.1 14446.4 31 0.25
bp 1600 822 1 7.8 Inf Inf 23 1
bwm2000 2000 15 11 3.8 3808.5 17 0.07

ck656 656 14 10.5 2 1052.6 20 0
conf5 0 ... 3072 7 422.2 * * * *
dwb512 512 2 7.7 13.3 6829.6 96 1

fidapm07 2065 14 ** * * 1008 0.12
fs 760 3 760 14 ** * * **
gemat11 4929 31 139 0.9 16.5 * *
gre 216b 216 26 ** * * **
hor 131 434 12 70.1 3.1 390.6 173 0.24
impcol e 225 7 7.2 2.9 594.3 12 0.01
jpwh 991 991 20 8.9 1 788 232 4.55
lns 3937 3937 12 372.2 * * * *
lop163 163 10 42.4 21.5 3505.8 43 0.01

mahindas 1258 1 8 58.2 36616.2 45 2.98
mbeacxc 496 6 ** * * **

mcca 180 8 22.1 2.8 479 49 0.01
memplus 17758 10 10 2.4 235.1 * *
orani678 2529 17 53.2 1.3 95.2 158 0.08
orsirr 1 1030 19 10.9 1.1 942.8 348 2.66
orsreg 1 2205 16 11 1.3 1225.6 573 3.17
plat1919 1919 14 ** * * **
psmigr 3 3140 6 281.2 3.4 21.9 * *
qh882 882 14 46.9 2.6 783.4 39 0.05

rbs480b 480 7 198.7 39.5 862.1 202 0.16
rw5151 5151 13 15.7 * * * *

s2rmt3m1 5489 5 62.4 * * * *
saylr4 3564 18 93.3 2.9 249.9 * *

sherman5 3312 17 22.5 2 567.6 270 0.92
shl 0 663 1 1 Inf Inf 1 1
steam1 240 6 15.7 3.5 829.9 129 101
steam2 600 2 13.9 15.9 9518.8 92 1
tols4000 4000 1 0.6 59.9 47929.2 1 0.75
west0989 989 10 15.9 5.1 4208.4 13 0

Figure 8: Basic results for MM data set.

12

0 10 20 30

0

1

2

3

0

20

40

60

80

100

120

140

Iteration

EGain

Figure 9: gemat11, order 4929

matrices, such as shl 0 and tols4000, have such small fill-in that there is no
real difference between the new algorithm and Gaussian elimination.

There are also some matrices, such as 1138 bus, for which the new algorithm
actually seems to be worse with respect to fill-in; presumably this is due to
random variation, or to non-zero entries that later become zero again in full
Gaussian elimination.

However, for most of the matrices tested, the new algorithm at least does no
harm with respect to Ê, and for several matrices, such as gemat11, memplus,
and rw5151, succeeds in solving the systems where Gaussian elimination runs
out of space. Moreover, the three matrices just mentioned are from diverse
applications, none of which are partial differential equations.

While the main question considered here is the average number of entries
needed to allow the randomized scheme to make progress, there is also the ques-
tion of the overall time taken: for several matrices, especially very small ones,
the “speedup” in overall time is actually less than one, even much less than one.
This unfortunate behavior can be much reduced or eliminated simply by having
a minimum threshold on the total number of entries in the LU factorization, say
50000, before rounding. The result is to reduce the new procedure to Gaussian
elimination for many of the given matrices. However, this was not done here,
so that effect of the randomized rounding on the gain could be seen.

Figures 9 and 10 show the performance of the algorithm for gemat11, again
showing a threshold for the gain as a function of K, and Figures 11 and 12 show
the performance for memplus.

13

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

0

5

10

15

K

Gain/TimeGain

Figure 10: gemat11

2 4 6 8 10

0

1

2

3

4

7.5

8

8.5

9

9.5

10

Iteration

EGain

Figure 11: memplus, order 17758

14

7 8 9 10

0.5

1

1.5

2

2.5

50

100

150

200

250

K

Gain/TimeGain

Figure 12: memplus

4 Concluding remarks

The algorithm described here is minimalist: it does not try to use a good elimi-
nation order, it has not been put within a larger iterative algorithm, it takes no
advantage of symmetry, it does no acceleration using previous results, etc. All
such options could be explored.

Other issues could be explored theoretically: why does the iterative improve-
ment work when a new factorization is used at each step, but not otherwise?
Again, any given factorization seems to be no worse as a pre-conditioner, but
also no better than, other heuristics for ILU-factorization. Why is the algorithm
effective for some matrices, but not others? What other matrix characteristics
are related to this property?

The implementation used here was not fine-tuned for storage efficiency; in
particular, as noted above, the entries in a rounded row are are all small integer
multiples of a single floating point value, and no advantage of that fact was
used. Such tuning, or combining this method with other techniques, should
allow larger problems to be solved.

Note that the algorithm is amenable to parallelization, in two ways: each
factorization can be done independently of the others (both L and U would
need to be stored), and the enforced sparsity of the matrix implies that there
is large set of independent vertices in the corresponding graph. In a parallel
implementation of the factorization, elimination steps could be done for rows
corresponding to that independent set. Next, rounding could be done in parallel
for every row. Iterating such steps in the factorization removes a constant
fraction of the rows per iteration, implying O(log n) iterations to complete a

15

factorization.
Acknowledgements. I’m grateful to Lawrence Cowsar, Roland Freund,

Peter Oswald, Kent Smith, and Margaret Wright for many helpful discussions,
and again to Kent Smith for providing several example matrices.

References

[BS99] R. E. Bank and R. K. Smith. The incomplete factorization multigraph
algorithm. Siam J. Sci. Comp., 20(4):1349–1364, 1999.

[BS02] R. E. Bank and R. K. Smith. An algebraic multilevel multigraph
algorithm. Siam J. Sci. Comp., 23(5):1572–1592, 2002.

[Mat] The matrix market. http://math.nist.gov/MatrixMarket.

[Wag99] C. Wagner. Introduction to algebraic multigrid. Technical report,
Universität Heidelberg, 1999.

16

