
Nearest Neighbor Queries in Metric Spaces

Kenneth L. Clarkson
Bell Laboratories, Lucent Technologies

Murray Hill, New Jersey 07974
clarkson@research.bell-labs.com

http://cm.bell-labs.com/who/clarkson/

Abstract

Given a set S of n sites (points), and a distance measure d, the nearest
neighbor searching problem is to build a data structure so that given a
query point q, the site nearest to q can be found quickly. This paper gives
data structures for this problem when the sites and queries are in a met-
ric space. One data structure, D(S), uses a divide-and-conquer recursion.
The other data structure, M(S, Q), is somewhat like a skiplist. Both are
simple and implementable. The data structures are analyzed when the
metric space obeys a certain sphere-packing bound, and when the sites
and query points are random and have distributions with an exchange-
ability property. This property implies, for example, that query point q
is a random element of S ∪ {q}. Under these conditions, the preprocess-
ing and space bounds for the algorithms are close to linear in n. They
depend also on the sphere-packing bound, and on the logarithm of the
distance ratio Υ(S) of S, the ratio of the distance between the farthest
pair of points in S to the distance between the closest pair. The data
structure M(S, Q) requires as input data an additional set Q, taken to be
representative of the query points. The resource bounds of M(S, Q) have
a dependence on the distance ratio of S ∪ Q. While M(S, Q) can return
wrong answers, its failure probability can be bounded, and is decreasing
in a parameter K. Here K ≤ |Q|/n is chosen when building M(S, Q).
The expected query time for M(S, Q) is O(K log n) log Υ(S ∪Q), and the
resource bounds increase linearly in K. The data structure D(S) has ex-
pected O(log n)O(1) query time, for fixed distance ratio. The preprocess-
ing algorithm for M(S, Q) can be used to solve the all-nearest-neighbor
problem for S in O(n(log n)2(log Υ(S))2) expected time.

1 Introduction

This paper addresses algorithmic questions related to the post office or nearest
neighbor problem:

Let (V, d) be a metric space, where V is a set and d is a distance
measure on V . Given a set S ⊂ V of n sites (points), build a data

1

structure so that given a query point q ∈ V , the nearest site to q
can be found quickly.

Two data structures are given here for this problem. One data structure,
M(S, Q), requires an additional set Q of m points, taken to be representative of
typical query points. The data structure M(S, Q) may fail to return a correct
answer, but the failure probability can be made arbitrarily small. This decrease
requires a proportional increase in query time and data structure space. The
other data structure, D(S), always returns a correct answer and does not need
the set Q, but its provable resource bounds are worse.

The data structure M(S, Q) has been implemented, with some preliminary
tests. For example, when the points of S, Q, and q are uniformly distributed
in a square, and the distance measure is Euclidean (`2), a version of the data
structure gives the correct answer for all of 500 tests. For this version, searching
requires about 21 distance evaluations for |S| = 2000, and the space required is
about 8 integers/site. (The data structure implemented uses K = 1000, γ = 1.2,
and uses an “early termination” to a collection of sites to be searched by brute
force.) Note that the algorithm uses the distance measure as a “black box.”
With 4000 similarly distributed points in <20, an average search time of 604
distance evaluations gives a site for which about 0.6 sites are closer, on average,
and at an average distance 2% farther than the true nearest neighbor distance.

The provable bounds require some general conditions on the data, and on
the metric space. The failure probability bounds hold for M(S, Q) when q
is a random element of Q ∪ {q}; we’ll call this requirement on q and Q an
exchangeability condition. When Q and q are each generated by some random
process, each with their probability distribution, the exchangeability condition
means that if we are given Q and q, and then take a random element of Q∪{q},
then that element will have the same probability distribution as q.

The bounds on the query time hold when Q, S, and {q} satisfy the exchange-
ability condition that they are each random subsets of Q ∪ S ∪ {q}.

This condition is satisfied when Q, S, and {q} are random subsets of some
U ⊂ V , or when the points in these sets are generated by random, indepen-
dent random variates with the same probability distribution. (The probability
distribution is arbitrary; in particular, it is not necessarily uniform.)

The proofs of the bounds also require that the metric spaces have certain
nearest neighbor bounds, which are implied by sphere-packing bounds; such prop-
erties are described in §3.4. In particular, <k has these properties under Lp

metrics. The constants associated with these properties appear in the bounds
for the algorithms, and are in general exponential in k.

Many of the provable bounds also involve the distance ratio, denoted Υ(T)
for a set T , which is the ratio of the distance between the farthest pair of points
in T to distance between the closest pair in T . The quantity Υ(S) appears in
bounds for D(S), and the quantity Υ(S ∪ Q) appears in bounds for M(S, Q).
The dependence is relatively mild, generally O(log Υ)O(1). It is reasonable in
practice to assume the rough relation Υ = nO(1), implying that “all logs are
equal.”

2

The preprocessing for D(S) needs

O(n)(lg n)O(lg lg Υ(S))

expected time, resulting in a data structure that answers queries q with q ∈R S ∪ {q}
in expected

O((lg n)O(1)+2 lg lg(Υ(S)))

time, and needing
O(n(lg n)O(1)+2 lg lg(Υ(S)))

expected space. (The dependence on the sphere-packing bounds for the metric
space is suppressed here.)

The preprocessing for M(S, Q) needs

O(Kn(log n)2(log Υ(S ∪Q)2)

expected time, yielding a data structure that answers queries in

O(K lnn) lg Υ(S ∪Q)

expected time, with failure probability O(log2 n)/K, and needing space

O(Kn log Υ(S ∪Q)).

Either preprocessing method also solves the all-nearest-neighbor problem:
find, for each site in S, the nearest other site. Algorithms for the all-nearest-
neighbor problem that need O(n log n) time have been known since 1983 for
<k[Cla83, Vai89], but the algorithms given here are the first with near-linear
bounds that use the distance measure alone; in particular, they do not use
quadtrees or quadtree-like spatial subdivisions as in previous work.

1.1 Why metric spaces?

Recall that if (V, d) is a metric space, then for all a, b, c ∈ V , d(a, a) = 0,
d(a, b) = d(b, a), and the triangle inequality d(a, c) ≤ d(a, b) + d(b, c) holds.

The approach taken here is to find algorithms that can be applied to general
metric spaces, but that have provable properties for important special cases.
There are several reasons for considering the nearest neighbor problem in this
generality. While closest-point problems have applications in statistics, data
compression, information retrieval, and other areas, many such applications are
in a high-dimensional setting, for which almost all known solutions either give
a slowdown over the naive algorithm, or use too much space. On the other
hand, high dimensional data often has useful structure. It may lie in a lower-
dimensional hyperplane or flat, or manifold, for example. Still, such structure
is not always readily apparent, as when the data lies in a manifold that isn’t
flat, or has fractal properties[FC96]. Hence it is desirable to seek algorithms
whose complexity does not depend strictly on the dimension, or on using most
coordinates, but rather on intrinsic properties of the data.

3

There are other reasons to consider general metric spaces: some distance
measures are not applied to spaces with real coordinates, such as edit distance
on strings. (We should note, however, that strings do not seem to have a useful
sphere-packing bound.) Moreover, some spaces of sites and queries have co-
ordinates that are restricted to small sets, so that intuitions or constructions
from Euclidean space are not necessarily helpful. If all coordinates are 0 or 1,
then distance evaluations between points are faster on real machines, using bit-
twiddling, than other coordinate-wise operations. An algorithm that uses the
distance measure, and only as a “black box,” will probably not be too compli-
cated: there are no operations on which such complexity can depend. Finally,
from a theoretical point of view, it seems reasonable to strip the problem down
to its essentials, and find the minimal properties needed for fast algorithms.

Algorithms operating in general metric spaces have been considered for some
time,[FS82] and there are some more recent contributions as well[Bri95, Uhl91,
Yia93]. Most of the proposed data structures are trees, and some are varia-
tions on the kd-tree, perhaps the most important practical method for nearest
neighbor searching in <k, for small dimension k. The data structure D(S) uses
divide-and-conquer in a somewhat similar way; in contrast, the data structure
M(S, Q) is somewhat akin to a skip list.

1.2 Why Q?

The need for the set Q for data structure M(S, Q) contrasts unfavorably with
most earlier work on the post office problem, where there is no such limitation.
Also, the analysis requirement that q have the same distribution as Q and S
is restrictive. However, in some significant applications, such as vector quanti-
zation or nearest neighbor classification, the queries have the same or similar
distribution as the sites, and so the set Q is simply more training data.

In other cases, say for coordinate spaces, the representative queries that
are needed can be at the least be generated uniformly within a region contain-
ing the sites. Also, such a set Q is available in a “deferred data structuring”
setting[MR86]. Here no preprocessing is done, and a single query is answered
with the naive algorithm. As more queries are answered, however, the set Q
is built up, and the data structures described here can be used to speed up
subsequent queries, under the assumption that future queries have a similar
distribution to past ones.

2 Outline

After some motivating remarks, the next section describes M(S, Q), and gives
failure probability bounds, first for general metric spaces, and then for spaces
that have a certain γ-dominator bound. Such a bound is implied by sphere-
packing bounds, discussed in §3.4, which also discusses γ-nearest neighbor bounds,
also implied by sphere-packing bounds. Such γ-nearest neighbor bounds are
used in §3.5, and in the following subsection addressing space bounds for M(S, Q).

4

q
S

R

Figure 1: The nearest neighbor ball B(q, R) of q.

A provably fast preprocessing algorithm for M(S, Q) is discussed in §4, including
some interesting relations holding for γ-nearest neighbors of β-nearest neighbors.
The data structure D(S) is discussed in §4, which also includes the use of the
data structure for inverse queries, where the sites that have a given point as
nearest neighbor are wanted.

3 Data structure M(S, Q)

3.1 Motivation

The original idea for the data structure goes back to a paper on the Euclidean
version of the problem[Cla88], and probably further than that. The idea is to
use a small subset R ⊂ S to bound search: for a given query q, the distance of q
to its nearest neighbor in R gives an upper bound on the distance to its nearest
neighbor in S. That is, the nearest site to q in S is contained within the nearest
neighbor ball B(q, R) of q with respect to R.

Definition: B(q, R). For metric space (V, d) with R ⊂ V , the nearest neighbor
ball of q with respect to R is

{x ∈ V | d(q, x) ≤ d(q, y) for all y ∈ R \ {q}}.

See Figure 3.1.
For a site p ∈ R, let C(p, R) be the union of balls B(q, R) over all (potential)

query points q with p closest in R. Then for a given query point q, the knowledge
that q is in the Voronoi region Vor(p) of p, that is, that p is closest to q in R,
allows the search for nearest sites to q to be restricted to C(p, R) ∩ S. (See
Figure 2.)

This suggests a recursive construction, building a data structure for each
C(p, R) ∩ S in a similar fashion. This is the idea of “RPO trees”[Cla88]. Such
a construction is predicated on the hope that each C(p, R) ∩ S is small; this is
false in general. However, in the Euclidean case, when R is a random subset of

5

q

p

Figure 2: The set C(p, R).

p R

Q

Figure 3: An approximation to C(p, R); Vor(p) is within the triangle.

S, and the Voronoi region Vor(p) is split up into combinatorially simple regions,
then such a region T will have C(T) ∩ S small, with high probability.[Cla88]

However, the latter construction seems to need a triangulation of the Voronoi
diagram of R, which is hard to extend to arbitrary metric spaces. Here we take
a simpler approach, and approximate C(p, R) with the union

C ′(p,R) ≡ ∪q′∈Vor(p)∩QB(q′, R).

of nearest neighbor balls of members of Q. That is, we approximate the con-
struction of the region C(p, R) by approximating the Voronoi region of p with
Vor(p)∩Q. Our hope is that for most of the query points q that will be encoun-
tered, if q is in Vor(p), then the set C ′(p, R) ∩ S will contain the nearest site to
q. (See Figure 3.)

To compensate for using Vor(p) ∩ Q to find C ′(p,R), rather than Vor(p),
we will expand each nearest neighbor ball by a given factor γ: we approximate
C(p,R) by C ′γ(p,R), which is the union of the balls Bγ(q, R). Such a ball is the
expansion of B(q, R) by the factor γ.

Definition: Bγ(q, R). For metric (V, d) with R ⊂ V , the γ-nearest neighbor

6

q’q p
p’

Figure 4: The 3-nearest neighbor ball of q′ contains the nearest neighbor ball
of q.

ball of q with respect to R is

{x ∈ V | d(q, x) ≤ γd(q, y) for all y ∈ R \ {q}}.

Heuristically, this seems like a reasonable way to be more likely to get a
correct answer. We can say more, however, as the following lemma states.

Lemma 1 Suppose measure d satisfies the triangle inequality. If points q and
q′ have p nearest in R, and d(q, p) < d(q′, p), then B(q, R) ⊂ B3(q′, R).

Proof. Suppose p′ is closer to q than p. Then

d(p′, q′) ≤ d(p′, q) + d(q, p) + d(p, q′) ≤ 3d(p, q′).

Thus, if for some query point q, the construction of C ′3(p, R) included a point
q′ in the Vor(p)∩S, and d(q′, p) > d(q, p), then C ′3(p, R)∩S contains the nearest
site to q. (See Figure 4.)

When the query points are distributed similarly to the points of Q, the prob-
ability that some C ′3(p, R) will contain B(q, R) is bounded by r/|Q|: roughly, a
random member of Q has this probability of being “covered” in this sense, and
the query point is will behave the same way.

3.2 The data structure

The data structure M(S, Q) is based on these ideas, but uses a more incremental
approach.

First, some definitions.

7

Definition: Nearest Neighbors. For metric space (V, d), set R ⊂ V , point
q ∈ V , the nearest neighbor distance of q with respect to R is

d(q, R) ≡ min
p∈R\{q}

{d(q, p)}.

A point p ∈ R realizing that distance is a nearest neighbor of q in R.

Definition: γ-Nearest Neighbors. Say that p ∈ V is a γ-nearest neighbor of
q ∈ V with respect to R if d(q, p) ≤ γd(q, R).

That is, p is a γ-nearest neighbor of q with respect to R if and only if
p ∈ Bγ(q, R).

It will be convenient at times to use still another notation for proximity.

Definition: q
γ−→ p. In a metric space (V, d), for q, p ∈ V , and R ⊂ V , let

q
γ−→ p denote the condition that p is a γ-nearest neighbor of q with respect to

R, that is, d(q, p) ≤ γd(p, R), and so p ∈ Bγ(q, R). Also write p
γ←− q if and

only if q
γ−→ p.

Armed with all these ways of saying the same thing, here is a succinct
definition of M(S, Q).

Construction of M(S, Q). The data structure M(S, Q) for nearest neighbor
searching is, for each site pj ∈ S, a list of sites Aj . The data structure has a
real parameter γ, picked before construction.

Let (p1, p2, . . . , pn) be a random permutation of S, and let Ri ≡ {p1, p2, . . . , pi},
so that Ri is a random subset of S. Shuffle Q with a random permutation as
well, so that Qj is a random subset of Q of size j, for j = 1 . . .m = |Q|. It will
be helpful to define Qj ≡ Q for j > m.

Define Aj as

{pi | i > j, there exists q ∈ QKi with pj
1←− q

γ−→ pi,with respect to Ri−1}.

The sites in Aj are in increasing order of index i.
This is the whole definition of M(S, Q).
While it is satisfying that M(S, Q) can be so succinctly defined, a more

detailed discussion may be helpful. Consider the subsets Ri to be built incre-
mentally, by picking pi randomly from S \Ri−1, and adding it to Ri−1, yielding
Ri. (Hereafter the numbering of the sites will be fixed in this random order.)

Each list Aj starts out empty. When adding site pi to make Ri, append pi

to Aj if there is some q ∈ QKi with pj nearest to q in Ri−1, and pi is a γ-nearest
neighbor of q. That is, for q ∈ Q, maintain the nearest neighbor to q in Rj , for
j = 1 . . . n. When adding pi, check each q ∈ Q, and record pi as nearest where
appropriate, and also add pi to Aj if q ∈ QKi and pi is γ-nearest to q.

What does this construction mean? Note that in the terminology of the last
subsection, we add pi to Aj when pi ∈ C ′γ(pj , Ri−1), our approximation to the
set of sites that may be nearer to some query point q if q has pj nearest in Ri−1.

8

Consider the special case where γ = 1, S ⊂ <k, Q = <k, K → ∞, and the
distributions of S and Q are uniform in a box. Here the construction puts pi on
Aj just when pi takes away part of the Voronoi region of pj , as witnessed by a
member of QKi; for large enough K, pi is a Delaunay neighbor of pj in Ri.

The Search Procedure for M(S, Q). The search procedure is as follows:
given query point q, start with site p1 as the candidate closest site to q. Walk
down A1, until a site pj closer to q than p1 is found. Now pj is the candidate
closest site to q; do a similar walk down Aj . Repeat until the Ak list for some
site pk is searched, and no site on that list is closer than pk. Terminate the
search and return pk as closest site.

This is the search procedure.
Note that, when K = ∞, so that QKi = Q for all i, this search returns

by construction the correct closest site for all elements of Q. When the search
procedure is applied to some q ∈ Q, if pi appears as a candidate closest site to
q, then pi is closest to q in Ri.

The query time and the probability of returning the correct nearest site
increase with K and γ. The average number of members of QKi with pj nearest
in Ri is K.

There are two uses of randomness here: for picking Ri, and for picking
QKi. The use of random subsets of the sites is similar to its use in some
other randomized geometric algorithms[Mul93, Cla92], and helps to speed up
the answering of queries. The random subset QKi, on the other hand, serves as a
proxy for members of some universe of queries, and aids correctness; intuitively,
any possible query point q will have a member q′ of QKi not too far away, and
hence a site nearest to q will be near to q′.

3.3 Failure probability analysis

The following bound on the failure probability holds without any restrictions
on the metric space.

Theorem 2 Suppose Q and q are such that q is a random element of Q∪ {q}.
Assume Kn < m = nO(1). If M(S, Q) is built with γ = 3, then the probability
that it fails to return a nearest site to q in S is O(log2 n)/K.

The proof depends on Lemma 1 and the following lemma.

Lemma 3 Define Q ≡ QKi ∪ {q}. Assume Kn < m = nO(1). With probability
1 − 1/n2, for every q′ ∈ Q′, the number of sites closer to q′ than its nearest
neighbor in Ri is κ = O(log n)n/i.

Proof. The set Q′ is fixed with respect to the random choice of Ri. Suppose
q′ ∈ Q′ and p ∈ S are such that there are k points of S closer to q′ than p is.
The probability that p ∈ Ri and also that p is the closest site in Ri to q′ is no
more than (

n−k−1
i−1

)(
n
i

) ≤ i

n
e−k(i−1)/(n−1).

9

Since the number of such pairs p and q′ is no more than (Ki + 1)(n− k) < mn,
the claim follows for k > κ ≡ (3 ln n + lnm)(n− 1)/(i− 1) = O(log n)n/i.

Proof. (of Theorem 2.) Let q be a random query point. Consider the con-
struction of the data structure when point pi+1 is added to make Ri+1, so pi+1

is possibly added to some Aj lists. Suppose pj is closest to q in Ri, but pi+1

is closer. Then the query procedure should change the candidate closest site
from pj to pi+1, but the procedure is not certain to do so if pi+1 is not in Aj .
Conversely, if such appropriate entries in the Aj lists are present, for each j
with 1 ≤ j ≤ n, then the query for q will be answered correctly. This implies
that the probability that the construction fails to produce a data structure that
answers a query correctly is no more than the sum over i, for i = 0 . . . n− 1, of
the probability that a failure occurs when pi+1 is added.

Thus we seek an upper bound on the probability that, when pi+1 is added:

1. With respect to Ri,
pi+1

<1←− q
1−→ pj ,

but

2. there is no point v ∈ QKi with

pi+1
3←− v

1−→ pj .

Let Q′ ≡ QKi ∪ {q}. For each pk ∈ Ri, let vk be the point in Q′ that has
pk as nearest neighbor in Ri, and that has maximum distance to pk among all
such points. If (1) holds, and q 6= vj , then (2) holds, by Lemma 1. (Put q′ = vj ,
q = q, and p = pj in the lemma.) To bound the probability that q = vj for
some j, use the condition of the theorem that q is random element of Q′Ki. The
probability that a random element of Q′ is one of the i points vj is

i/|Q′| = i/(Ki + 1) < 1/K,

and so the probability of (2), given (1), is at most 1/K.
If some q′ ∈ Q′ has more than κ = (3 lnn + ln m)(n− 1)/(i− 1) sites closer

to it than its nearest neighbor in Ri, consider the addition of pi+1 a failure; this
occurs with probability 1/n2, by Lemma 3. Suppose that the addition of pi+1 is
not a failure for this reason, so that every q′ ∈ Q′ has fewer than κ sites closer
to it than its nearest neighbor in Ri. The probability of (1) is then κ/n, for q
any member of Q′Ki, and so the probability of failure when adding pi+1 is at
most

1/n2 +
κ

n

1
K

= O(log n)/iK,

for i > 0; using the trivial bound for small i, and adding this for i up to n
bounds the overall failure probability at O(log2 n)/K.

A similar bound holds when γ < 3, for metric spaces that satisfy an addi-
tional condition, which can be expressed using the following definition.

10

Definition: γ-dominating. For a, b, c ∈ V , say that c γ-dominates b (with
respect to a) if B(b, {a}) ⊂ Bγ(c, {a}).

The necessary assumption is:

Definition: γ-dominator bounds. Say that a metric space V has a γ-
dominator bound if there is a value Dγ such that if for any a ∈ V and Q ⊂ V ,
there is a set Q̂ ⊂ Q of size no more than Dγ , such that for every b ∈ Q, there
is c ∈ Q̂ such that c γ-dominates b.

In other words, a set C(p, R), as described in §3.1, is contained in an ap-
proximation C ′γ(p, R), generated by a finite set Q̂.

For any metric space, D3 = 1. Also, as described in Theorem 6 below, a
metric space that has a sphere-packing bound also has a γ-dominator bound.

For <k as an Lp space, the value Dγ is, in general, exponential in the di-
mension k. However, many “naturally occurring” point sets have structure, and
that structure may imply that Dγ is much smaller than the worst-case bound
for <k.

Theorem 4 Suppose metric space (V, d) has a γ-dominator bound, and Q and
queries q are such that q is a random element of Q ∪ {q}. Assume Kn ≤ m =
nO(1). Suppose M(S, Q) is built for some value of γ. Then the probability that
M(S, Q) fails to return the nearest site in S is O(Dγ log2 n)/K.

Proof. The proof follows exactly as for Theorem 2, except for the probability
of (2), that is, the probability that no member of Q γ-dominates q. Here the
number of members of Q′ needed to γ-dominate all members of Q′ is Dγi, rather
than just i, and so that probability that (2) holds is Dγi/(Ki + 1) ≤ Dγ/K.

3.4 Sphere packing, γ-dominators, γ-nearest

The mysterious “γ-dominator” bound above is implied by less mysterious sphere-
packing bounds discussed in this section.

The sphere-packing bounds also imply some γ-nearest neighbor bounds,
which are needed to prove bounds on the query and preprocessing times. While
the γ-dominator bounds suggest the interest of considering sites that are γ-
nearest to points in Q, the γ-nearest neighbor bounds help show that the number
of such γ-nearest sites is not too large.

The properties described in this section hold for Lp spaces. It’s worth em-
phasizing that the properties are not used in the data structures, but only in
their analysis.

Definition: Sphere packing. The space (V, d) has a sphere-packing bound if
the following holds: for any real number ρ, there is an integer constant Sρ such
that for all a ∈ V and W ⊂ V , if |W | > Sρ, and d(w, a) ≤ D for all w ∈ W for
some D, then there are w,w′ ∈W such that d(w,w′) < D/ρ.

11

There is a well-known relation between packing and covering, which we’ll
need; for completeness, a proof is given here.

Theorem 5 If the metric space (V, d) has a sphere-packing bound, then for any
set W ⊂ V contained in a sphere of radius D, there is Ŵ ⊂ W of size Sρ such
that for all w ∈W \ Ŵ , d(w, Ŵ) < D/ρ.

Proof. Build sets Wi = {w1, w2, . . . wi} point by point, where WSρ
= Ŵ .

Choose w1 arbitrarily from W , and then for i > 1, pick for wi+1 the w ∈ W
which maximizes d(w,Wi). Thus d(p, Wi) ≤ d(wi+1,Wi) for all p ∈ W \ Ŵ ,
and the distances d(wi+1,Wi) are nonincreasing in i. When i = Sρ, the sphere-
packing bound implies that d(pi+1,Wi) ≤ D/ρ, and so d(p, Wi) ≤ D/ρ for all
p ∈W .

Theorem 6 If the metric space (V, d) has a sphere-packing bound with constant
Sρ, then the space has a γ-dominator bound with constant

Dγ ≤ 1 + dlog(µ)/ log(1− µ)eS1/µ,

where µ ≡ (γ − 1)/(γ + 1).

Proof. If γ ≥ 3, we’re done, so assume 1 < γ ≤ 3, and so 0 < µ ≤ 1/2.
Given γ > 1, a ∈ V , and Q ⊂ V , let q0 maximize {d(q, a) | q ∈ Q}. For

i = 0 . . . k = dlog(µ)/ log(1− µ)e, let ri ≡ (1− µ)id(q0, a). Let Qi denote

{q ∈ Q | ri+1 < d(q, a) ≤ ri}.

Apply the previous lemma to each Qi, with ρ = 1/µ, obtaining sets Q̂i. Then
the set Q̂ needed for a γ-dominator bound is the union of the Q̂i, together with
{q0}, as we next show.

Suppose q ∈ Qk, so d(q, a) < rk ≤ µd(q0, a). Then for any z ∈ V with
d(q, z) ≤ d(q, a), by the triangle inequality

d(q0, z) ≤ d(q0, a) + d(a, q) + d(q, z) ≤ (1 + 2µ)d(q0, a) ≤ γd(q0, a),

and so B(q, {a}) ⊂ γB(q0, {a}).
Suppose q ∈ Qi, so ri+1 < d(q, a) ≤ ri. Then Q̂i contains a point q′ such

that d(q, q′) ≤ alphari, and so if z has d(z, q) ≤ d(a, q), then

d(q′, z) ≤ d(q′, q) + d(q, z) ≤ µri + r + i = (1 + µ)ri,

and since d(q′, a) ≥ ri+1 = ri(1− µ), we have

d(q′, z) ≤ 1 + µ

1− µ
d(q′, a) = γd(q′, a).

Hence B(q, {a}) ⊂ γB(q′, {a}).
Thus for any q ∈ Q, there is some q′ ∈ Q̂ with B(q, {a}) ⊂ γB(q′, {a}), and

a γ-dominator bound holds.

12

We turn now to γ-nearest neighbor bounds, which weakly generalize the
long-established nearest neighbor bounds of Euclidean spaces:

Definition: Nearest Neighbor bounds. Say that metric space (V, d) has a
nearest neighbor bound if there is a constant N1 such that for all a ∈ V and any
W ⊂ V , N1 bounds the number of b ∈W such that a is a nearest neighbor of b
with respect to W .

Remark. The <k spaces under Lp norms have nearest neighbor bounds. A
construction using a fan of narrow cones about a can be used to prove this, or
Lemma 7 below can be applied.

For the purpose of analyzing the algorithms given here, it would be ideal
if a point a was γ-nearest neighbor to a constant number of points of a given
set. Unfortunately, this may not be true, even for Euclidean spaces. However, a
weaker condition does hold for spaces having a sphere-packing bound, and we’ll
use that condition to prove algorithm bounds. This is, roughly, that if a point
a is γ-nearest neighbor to many points, then those points must be at a wide
range of distances from a.

Definition: υ(x, R). For x ∈ V and R ⊂ V , let υ(x,R) denote

max{d(x, y) | y ∈ R}
d(x,R).

Definition: Neighbor sets. For x ∈ V , and W ⊂ V , let Nγ(x,W) denote
the points of W for which x is a γ-nearest neighbor with respect to W . Let
nγ(x, W) ≡ |Nγ(x,W)|. For γ ≥ 1 and given υ > 0, let

Nγ,υ ≡ max{nγ(x,W) | x ∈ V,W ⊂ V, υ(x, W) ≤ υ},

if such a value exists.
Note that N1,υ ≤ N1 for any υ.

Definition: γ-nearest neighbor bounds. Say that a metric space (V, d) has
a γ-nearest neighbor bound if it has a nearest neighbor bound, and also Nγ,υ

exists for all υ > 0.
Such a bound is implied by a sphere-packing bound.

Lemma 7 If a metric space (V, d) has a sphere-packing bound, then it also has
a γ-nearest neighbor bound, with Nγ,υ ≤ S2γ lg υ.

Proof. Given x ∈ V and W ⊂ V , for i = 0 . . . dυ(x, W)e, let

W i ≡ {y ∈W | 2id(x,W) ≤ d(x, y) ≤ 2i+1d(x,W)}.

Now using Theorem 5, at most S2γ points of W i have x as a γ-nearest neighbor,
and so at most S2γ lg υ(x,W) points of W have x as nearest neighbor.

The following technical lemma will be useful.

13

Lemma 8 For x, y ∈ V and R ⊂ V ,

nγ(x,R ∪ {y}) ≤ Nγ,υ(x,R) + 1.

That is, we can cheat in the quantity υ(,), and not pay too much.

Proof. Trivial.

3.5 Query time analysis

We can now analyze the running time of the search procedure for M(S, Q).
First, a definition.

Definition: the distance ratio Υ. Given finite W ⊂ V , let Υ(W) be the
distance ratio

max{d(x, y) | x, y ∈W}
min{d(x, y) | x, y ∈W,x 6= y}.

Of course, υ(x, W) ≤ Υ(W) for any x ∈ W . All our bounds could use
max{υ(x, W) | x ∈W} instead of Υ(W), but the latter has a simpler and more
familiar definition.

Theorem 9 Suppose metric space (V, d) has a γ-nearest neighbor bound. Sup-
pose Q, S, and {q} are all random subsets of Q ∪ S ∪ {q}. Suppose n = |S|
and Kn ≤ m = |Q| = nO(1). Then the expected work in answering a query for
point q using M(S, Q), built with parameter γ, given that the returned answer
is correct, is

O(Nγ,ΥN1K lnn),

where Υ ≡ Υ(S ∪Q).

Proof. The work done in answering a query is proportional to the number of
members of Aj lists that are considered in the search. When adding site pi+1 to
make Ri+1, an entry is made for pi+1 that will result in work for a query point
q when there is y ∈ Ri and q′ ∈ QKi such that the following hold with respect
to Ri:

1. y is nearest to q;

2. y is nearest to q′;

3. pi+1 is γ-nearest to q′.

That is, in the “arrow” notation,

q
1−→ y

1←− q′
γ−→ pi+1.

We want to bound the expected number of such configurations. First observe
that this number is the sum, over q′′ ∈ QKi, of the expected number of such

14

configurations with q′ = q′′. That is, the desired number is |QKi| = Ki times
the expected number of such configurations, for a random choice of q′ from QKi.

The exchangeability assumptions for S, Q, and {q} allow us to pick QKi, Ri,
and q in a few steps: choose a random subset Q′ ≡ QKi∪Ri∪{q} ⊂R Q∪S∪{q},
then choose R′′ ⊂R Q′ of size i+2, then pick q′ ∈R R′, and finally q ∈R R′\{q′}.
The set QKi is then Q′ ∪ {q′} \R′.

For a given pi+1, the number of q′′ ∈ R′ with pi+1 as γ-nearest with re-
spect to R′ is Nγ,υ(pi+1,R′), by Lemma 7, or 1 +Nγ,υ(pi+1,R′\{q}), by Lemma 8,
and so the probability that a random q′ ∈ R′ has pi+1 γ-nearest is (1 +
Nγ,υ(pi+1,R′\{q}))/(i + 2). Note that υ(pi+1, R

′ \ {q} ≤ Υ(S ∪Q), so the proba-
bility is at most (1 +Nγ,Υ)/(i + 2).

For any given such q′, with y ∈ Ri nearest to q′ in Ri, the number of
b ∈ R′ \ {q′} that have y as nearest neighbor is at most N1, since (V, d) has
a nearest neighbor bound. The probability that a random q ∈ R′ \ {q′} has y
nearest is N1/(i + 1).

The probability that (1), (2), and (3) hold for random q and q′ is thus
Nγ,ΥN1/(i+2)(i+1), and so the expected number of configurations is Ki times
this quantity, or O(K/i). This bounds the work for random query q, associated
with pi+1 on the list Aj list for site y ∈ Ri.

Summing this bound for i + 1 from 1 to n yields the result.

3.6 Space bounds for M(S, Q)

The following lemma is needed for proving space bounds, and for proving bounds
on the preprocessing time.

Lemma 10 Suppose (V, d) is a metric space that has a sphere-packing bound,
and |V | = n, with distance ratio Υ ≡ Υ(V). For R a random subset of V of size
i, p ∈ V \ R, and β > 1, the expected number of q ∈ V \ R with p as β-nearest
neighbor in R is

O(Nβ,Υ)n/i = O(S2β log Υ)n/i.

Proof. The proof is similar to that of Theorem 9.
We observe that the desired quantity is n − i times the probability that a

random choice q ∈R V \R has q
β−→ p.

The random choice of R ⊂R V and q ∈R V \R is equivalent to picking random
R′ ⊂R V of size i + 1, then picking q ∈R R′, and finally setting R ≡ R′ \ {q}.

By Lemma 7, the number of x ∈ R′ with p as β-nearest with respect to R′

is at most Nβ,Υ. The probability that q ∈R R′ is one such point is at most
Nβ,Υ/(i + 1). The result follows, multiplying by n− i.

The following lemma will be helpful later.

15

Lemma 11 For random q ∈ V , and random R ⊂R V , the expected number of
β-nearest neighbors of q with respect to R is

O(Nβ,Υ) = O(S2β) log Υ.

Proof. From Lemma 10, for each p ∈ R the number of q ∈ S with p as a
β-nearest neighbor is O(Nβ,Υn/i), where i = |R|. Multiplying by i, which is
the number of such p, and dividing by n, the number of such q, gives the result.
The last equality in the lemma statement is from Lemma 7.

Theorem 12 Suppose Q and S are random subsets of Q∪ S. When (V, d) has
a sphere-packing bound, the expected space used by the data structure M(S, Q)
is O(S2γ log Υ(S ∪Q))Kn.

Proof. When pi+1 is added, it is added to the Aj lists of those pj for which
there is some q ∈ Qi+1 that has pj as nearest neighbor in Ri and pi+1 as γ-
nearest neighbor in Ri+1. Each such q ∈ Qi+1 yields at most one entry in some
Aj list; the expected number of such entries is bounded by applying the previous
lemma to Ri as a random subset of V = Ri ∪ Qi+1. Summing over i = 1 . . . n
yields the result.

4 Faster preprocessing for M(S, Q)

This section gives a preprocessing algorithm for M(S, Q). The algorithm re-
quires O(Kn)(log n)2(log Υ(S ∪Q)2) expected time when S is a random subset
of S ∪Q.

The problem in the basic construction of M(S, Q) is to maintain, for each
member of Q, its γ-nearest neighbors in Ri. As we’ll see, it will be helpful to
maintain, in addition, the γ-nearest neighbors of S in Ri: these will help speed
up the computation of nearest neighbors when a site is added to Ri. (Of course,
some members of S will be in Ri; for p ∈ Ri, as before, we’ll consider its nearest
neighbor to be the closest site in Ri\{p}.) Suppose Q and S are random subsets
of Q ∪ S. Then Ri ⊂R Q ∪ S, and so here the basic problem is to maintain
the γ-nearest neighbors of a set with respect to a random subset of that set.
Thus under this assumption, it’s no loss of generality to solve this maintenance
problem for a set S.

The general step of this construction is to update the γ-nearest neighbor
relation for Ri+1, given that random pi+1 ∈ S \ Ri has been added to random
Ri ⊂ S, yielding Ri+1. To save i’s, we’ll refer in this section to random R ⊂ S
and random p ∈ S \R. We’ll assume that the metric space (V, d) has a sphere-
packing bound.

The algorithm will maintain a neighborhood relation
γ′

=⇒ between points
in R. This relation will be used to find the points of S for which a point p is

γ-nearest neighbor. This information, in turn, will help update the
γ′

=⇒ relation.

16

4.1 Outline

The first subsection gives some probabilistic lemmas that are used in the anal-
ysis, and may help motivate the algorithm that follows. Next follows some geo-
metric notation, and the basic relations that are maintained by the algorithm.
The algorithm is given in two main parts, M.1 and M.2, with two auxiliary al-
gorithms then described; finally, the analysis of the running time is completed.

Remember that n is the number of elements of S and Υ(S) is the ratio

max{d(x, y) | x, y ∈ S}
min{d(x, y) | x, y ∈ S, x 6= y}.

Hereafter, we’ll refer to Υ(S) simply as Υ.

4.2 Probabilistic lemmas

In these lemmas, fix β > 1.

Definition: Aβ. Let Aβ denote Nβ,Υn/i.
Thus Lemma 10 can be restated as follows:

Lemma 13 The expected number of s ∈ S with p as a β-nearest neighbor in R
is O(Aβ).

Lemma 14 Let R ⊂R S of size i and p ∈R S. The expected number of config-
urations (p, q, p′) with q ∈ S, p′ ∈ R, and

p
<1←− q

β−→ p′

is
O(A2β) = O(S4β(log Υ))n/i.

That is, when p is added, we can bound the expected number of β-nearest
neighbors of points q ∈ S that have p as new nearest neighbor.

Proof. The number of such configurations is the sum, over p′ ∈ R, of the
expected number involving p′, or i times a bound that holds for any given p′.
As in the proof of Theorem 9, the expected number of configurations is n times
the expected number involving a random q ∈ S.

Thus we consider the expected number of configurations for some fixed p′,
and for random q ∈ S and p ∈ R. We assume that q /∈ R; the argument when
q ∈ R is similar.

Under these conditions, q and p are random elements of R′ ≡ R ∪ {q, p},
which we can view as chosen by first picking q from R′, and then picking p from
R′ \ {q}. Let n2(q) denote the second nearest neighbor of q in R′. The problem
becomes: what is the probability that random q ∈ R′ has d(q, p′) ≤ βd(q, n2(q)),
and that the nearest neighbor of q is picked to be p? The latter probability is

17

1/(i + 1); the former probability is 1/(i + 2) times the number of points q′ ∈ R′

that have d(q′, p′) ≤ βd(q′, n2(q′)).
Putting these considerations together, the expected number of configurations

of the lemma statement is in/(i + 1)/(i + 1) times the size of

{q′ ∈ R′ | d(q′, p′) ≤ βd(q′, n2(q′))}.

The number of such q′ can be bounded by S4β lg Υ, with a proof similar to that
of Lemma 7: separate the sites of R into groups according to their distance from
p′, and apply Theorem 5, so that at most S4β sites in a group have a nearest
neighbor in the group at a distance larger than β/2 times their distance to p′.
Since V is a metric space, all but S4β sites in the group have second nearest
neighbors within a distance at most β times their distance to p′. The lemma
follows.

4.3 Geometric notation and lemmas

Before stating the geometric starting point for the algorithm, some notation will
be helpful:

Definition: d(c). In the remainder of this section, abbreviate d(c,R) by d(c).

Definition: Ma. For a ∈ R, let Ma ≡ max{d(s, a) | s 1−→ a}.

Definition: a
β

=⇒ b. For a, b ∈ R, let a
β

=⇒ b denote the condition that
d(a, b) ≤ βMa.

All these definitions are with respect to R, which is left implicit. When
considering a site p /∈ R, the sites s ∈ S with s

<1−→ p are those which have p as
nearest neighbor in R ∪ {p}.

For a, b ∈ R, the relation a
2=⇒ b is akin to a and b being Delaunay neighbors:

if there is some s ∈ S with a
1←− s

1−→ b, then a and b are Delaunay neighbors
and both a

2=⇒ b and b
2=⇒ a.

Note that if a
β

=⇒ b, then the site s realizing Ma has a
1←− s

β+1−→ b, since by
the triangle inequality, d(s, b) ≤ d(s, a) + d(a, b) ≤ (1 + β)d(s).

The following lemmas will be helpful.

Lemma 15 If x
β←− x′

δ−→ y′, then d(x, y′) ≤ (β + δ)d(x′).

Proof. Using the triangle inequality,

d(x, y′) ≤ d(x, x′) + d(x′, y′) ≤ βd(x′) + δd(x′) = (β + δ)d(x′).

Lemma 16 If x′
β−→ y

δ−→ z for z ∈ R, then x′
β+δ+βδ−→ z.

18

Proof. Let a ∈ R have a
1←− x′. From the previous lemma,

d(y) ≤ d(a, y) ≤ (1 + β)d(x′),

and so
d(x′, z) ≤ d(x′, y) + d(y, z) ≤ βd(x′) + δ(1 + β)d(x′),

and the result follows.

Lemma 17 The number of a ∈ R with a
β

=⇒ p is no more than the expected
number of s ∈ S with s

β+1−→ p, which is O(Aβ+1).

Proof. For each a ∈ R with a
β

=⇒ p, as noted there is some s with s
β+1−→ p.

Since s
1−→ a for only one a ∈ R, the lemma follows.

4.4 Algorithm Structure

Lemma 16 may help motivate the following definition.

Definition: γ′. Fix a parameter α with 1 ≤ α ≤ γ, and let γ′ ≡ 1+α+γ +αγ.
The algorithm will maintain the nearest neighbor relation s

1−→ f for each

f ∈ R, and a subset of the relation a
γ′

=⇒ f for each a, f ∈ R. That is, a
γ′

=⇒ f
will be known for all a, f ∈ R for which there are s, c ∈ S with

a
1←− s

γ−→ c
α−→ f.

This condition implies a
γ′

=⇒ f , by Lemmas 16 and 15.
The goal is to update these relations when p is added to R, in roughly O(n/i)

time, where i = |R|.
Algorithm M.1, given in §4.6, finds s with s

<1−→ p for a given p, using the
γ′

=⇒ relation. Algorithm M.2, given in §4.7, updates the
γ′

=⇒ relation, and uses
a set Ĝ ⊂ R whose construction is given in §4.9. The maintenance of the data

structures representing 1−→ and
γ′

=⇒ is described in §4.8.

4.5 Heaps of relations

In large part, the algorithm is simply the maintenance of data structures repre-
senting the −→ and =⇒ relations. These will comprise, for each f ∈ R, some
sets of sites of S, each in a heap (priority queue) with maximum key value on
top. The heaps are:

Hf←: {s ∈ S | s 1−→ f}, with key values d(f, s);

Hf⇒: {a ∈ R | f γ′

=⇒ a}, with key values −d(a, f);

Hf⇐: {a ∈ R | a γ′

=⇒ f}, with key values Ma;

19

The heap Hf⇒ stores the a with minimum d(a, f) on top of the heap.
Heaps are useful here because a simple procedure allows entries with key

values greater than a given value X to be found in constant time for each such
entry. The procedure simply checks if the top of the heap has key value greater
than X; if so, that value is reported, and recursively the children of the top are
checked.

Note that the keys of entries in Hf⇐ are the keys of the tops of heaps Ha←,

when a
γ′

=⇒ f . (A fine point here is that the key for a in Hf⇐ is the value of Ma

when a is inserted in Hf⇐; that is, the value of Ma may be allowed to change
without updating the key for a immediately. This issue is discussed in §4.8.)

4.6 Finding γ neighbors using
γ′

=⇒
We can now discuss how to obtain all s ∈ S with s

γ−→ p, and in particular,
those with s

α−→ p and even s
<1−→ p.

Algorithm M.1: find s with s
γ−→ p. Look up f , the nearest neighbor of p

in R. For each entry a in Hf⇐, use Ha← to find all s with

s
1−→ a and d(s) ≥ d(a, p)/(1 + γ).

Check if d(s, p) ≤ γd(s), so that s
γ−→ p.

Lemma 18 Algorithm M.1 finds the sites with p as γ-nearest neighbor in R.

Proof. Suppose that
a

1←− s
γ−→ p

1−→ f (1)

holds. The relation in the middle, s
γ−→ p, must be found using stored informa-

tion. By Lemma 16, the above implies s
2γ+1−→ f , and so d(a, f) ≤ (2 + 2γ)d(s)

using Lemma 15. Hence d(a, f) ≤ γ′d(s) ≤ γ′Ma, and so a
γ′

=⇒ f . Thus, a
γ′

=⇒ f

is necessary for s
γ−→ p. Finally, a

1←− s
γ−→ p implies that d(a, p) ≤ (1+γ)d(s),

using Lemma 15.

Lemma 19 The expected work by Algorithm M.1 is O(Aγ′+1).

Proof. The number of sites a ∈ R inspected by the algorithm is bounded
using Lemmas 17 and 13. The s examined all have

d(s, p) ≤ d(s, a) + d(a, p) ≤ (2 + γ)d(s),

and so all s examined have s
γ+2−→ p. The result follows.

20

4.7 Finding
γ′

=⇒ relations of p

With knowledge of the sites for which p is a γ-nearest neighbor comes the
knowledge of those sites for which p is a nearest neighbor. (Also the value
of Mp is found.) These sites must have their nearest neighbor sites changed
to p; however, it will be essential to retain knowledge of their former nearest

neighbors when finding the sites a ∈ R for which p
γ′

=⇒ a or a
γ′

=⇒ p after p is
added. (Note that the exposition below retains the −→ and =⇒ relations with
respect to R, before p is added.)

Since the relation g
γ′

=⇒ a depends on Mg, and Mg may change when p is
added, the heaps for g must be updated for such changes. This issue is discussed
in §4.8 below.

Algorithm M.2. Find all a with p
γ′

=⇒ a or a
γ′

=⇒ p.
For each g ∈ R and c ∈ S with g

1←− c
<1−→ p, use Hg⇒ to find all a with

g
γ′

=⇒ a and d(a, g) ≤ γ′d(c, g),

and check if d(c, a) ≤ (γ′−1)d(c, p). If so, record p
γ′

=⇒ a. (This may not record

all a for which p
γ′

=⇒ a, but it does record all those needed for the correctness
condition; heuristically, the fewer a recorded, the better.)

Make the set G where

G ≡ {g ∈ R | g 1←− c
α−→ p, c ∈ S}.

Using the algorithm of §4.9, build a set Ĝ ⊂ G, of size independent of n, with
the property that for all c with c

α−→ p there is ĝ ∈ Ĝ with c
α−→ ĝ. Now for

each ĝ ∈ Ĝ, use Hĝ⇐ to find all a with

a
γ′

=⇒ ĝ and Ma ≥ d(p, ĝ)/2α(1 + γ),

and check if a
γ′

=⇒ p.

(The test for a
γ′

=⇒ p could use the stringent condition that there is some s

with a
1←− s

γ′−1−→ p, and still be correct; moreover, all s
1−→ a with d(a, s) ≥

d(a, p)/γ′ could be tested for s
γ′−1−→ p within the desired time bounds. This

might give a heuristic improvement.)

This algorithm updates the subset of
γ′

=⇒ that is promised to be maintained.

Lemma 20 Correctness of Algorithm M.2.
The above algorithm finds all a such that there are s and c with

a
α←− s

γ←− c
<1−→ p,

21

and records p
γ′

=⇒ a, or
a

1←− s
γ−→ c

α−→ p,

and records a
γ′

=⇒ p. This maintains the condition that for all a, g ∈ R, if there
are s, c ∈ S with

a
1←− s

γ−→ c
α−→ g,

then a
γ′

=⇒ g is known.

Proof. There are two cases.
Case I: a

α←− s
γ←− c

<1−→ p. Here the site g ∈ R with c
1−→ g has

g
γ′

=⇒ a known, by induction. Moreover, d(c, a) ≤ (γ′ − 1)d(c, g) by Lemma 16,
and so d(g, a) ≤ γ′d(c, g) by Lemma 15. Hence the conditions under which

a is examined for p
γ′

=⇒ a are necessary for that condition to hold. Also, if

d(c, a) ≤ (γ′ − 1)d(c, p), then p
γ′

=⇒ a using Lemma 15 and Mp ≥ d(c, p).
Case II: a

1←− s
γ−→ c

α−→ p. By induction, any g ∈ R with c
α−→ g has

a
γ′

=⇒ g recorded. By construction, there is some ĝ ∈ Ĝ examined with c
α−→ ĝ;

also, using Lemma 17,

d(c) ≤ d(c, a) ≤ (1 + γ)d(s),

and using the triangle inequality,

d(ĝ, p) ≤ 2αd(c) ≤ 2α(1 + γ)d(s) ≤ 2α(1 + γ)Ma.

Hence the conditions under which a is examined for a
γ′

=⇒ p are necessary.

Lemma 21 Algorithm M.2 requires O(A2(γ′+1)) expected time to find all a ∈ R

with p
γ′

=⇒ a, and O(Aγ′′ |Ĝ|) to find all a ∈ R with a
γ′

=⇒ p, where γ′′ ≡
2 + γ + 3α(1 + γ).

Proof. The points a ∈ R examined for p
γ′

=⇒ a have

p
<1←− c

1−→ g
γ′

=⇒ a

for some c and g, and have d(a, g) ≤ γ′d(c). By the triangle inequality, d(c, a) ≤
(γ′ + 1)d(c), and so the first claim follows from Lemma 14.

Since a
γ′

=⇒ ĝ, d(a, ĝ) ≤ γ′Ma, and since d(p, ĝ) ≤ 2α(1 + γ)Ma, it follows
that for s realizing Ma,

d(s, p) ≤ d(s, a) + d(a, ĝ) + d(ĝ, p) ≤ (1 + γ′ + 2α(1 + γ))d(s, a),

and the second claim follows from simplifying this expression, and applying
Lemmas 17 and 13.

22

4.8 Maintaining heaps

As discussed in §4.5, the relations a
1←− s and a

γ′

=⇒ b are represented using
heaps for a ∈ R. When p is added, the heaps Hp∗ are created and some heaps
Ha∗ are updated to reflect relations involving p. First, a bound on the cost of
this operation.

Lemma 22 The expected cost of adding relations s
1−→ p, a

γ′

=⇒ p, or p
γ′

=⇒ a,
is A2(γ′+1)O(log n).

Proof. Each relation p
γ′

=⇒ a implies that for s
<1−→ p realizing Mp,

p
<1←− s

γ′+1−→ a.

The bound follows by Lemma 14, and using a heap with O(log n) per insertion.
From Lemmas 17 and 13, and using a heap with insertion time O(log n), the

time for adding the first two types of relations is Aγ′+1O(log n).

The relations
γ′

=⇒ continue to hold when p is added, except possibly for g ∈ R

with g
1←− c

<1−→ p for some c ∈ S. We next look at what heap maintenance
must be done to reflect this.

The entry for c in Hg← can be deleted in O(log n) time.

The heaps Hg⇒ and Ha⇐ have entries a with g
γ′

=⇒ a, and this relation
may become false when p is added. When Hg⇒ is used in Algorithm M.2, the a

examined are close to g, and the analysis of Lemma 21 holds even when g
γ′

=⇒ a
is false. Hence, no updating of Hg⇒ need be done.

Finally, a change in Ha⇐ in Algorithm M.2 must be considered. The ap-
proach we take is to do nothing to update Ha⇐, but instead to verify relations

when they are used. That is, we verify the relation a
γ′

=⇒ f claimed by Hf⇐

in Algorithm M.1, and the relation a
γ′

=⇒ ĝ claimed by Hĝ⇐ in Algorithm M.2.
If the key for a in Hf⇐ is still Ma, then no change in Hf⇐ is needed. If Ma

is currently smaller than that key value, but still Ma ≥ d(a, ĝ)/γ′, then the
relation still holds, but the key value must be updated and its heap position
changed. If Ma < d(a, ĝ)/γ′, then a is deleted from Hĝ⇐. Similar maintenance
can be done for Hf⇐ in Algorithm M.1.

Lemma 23 Verifying and updating the relations in heaps Hf⇐ and Hĝ⇐ needs
O(Aγ′′ |Ĝ| log n) expected time. Here γ′′ is defined as in Lemma 21.

This ignores the work in deleting entries a for which a
γ′

=⇒ ĝ is no longer
true. However, this work is done once for each such relation, and therefore can
be charged to the insertion time for a in Hĝ⇐.

Proof. This is simply the O(log n) work for each a examined by some Hĝ⇐.
The time to verify Hf⇐ is dominated by this.

23

4.9 Finding Ĝ

Next we’ll see that if a sphere-packing bound holds, as discussed in §3.4, then
the set Ĝ exists, and can be found efficiently. The algorithm is described within
the proof of the following lemma.

Lemma 24 Suppose (V, d) has a sphere-packing bound. For p ∈ S and R ⊂ S,
let S′ denote the set of c ∈ S with c

α−→ p with respect to R, where α > 4/3.
Let

G ≡ {g ∈ R | c 1−→ g, c ∈ S′}.
Then there is a set Ĝ ⊂ G of size O(S3α log3α/4 υ(p, S′)) such that for any
c ∈ S′, there is some ĝ ∈ Ĝ with c

α−→ ĝ.

Proof. Let
dl ≡ min{d(c) | c ∈ S′},

and let
dh ≡ max{d(c) | c ∈ S′}.

Let
α̂ ≡ 3α/4.

Divide the interval (dl, dh) into ranges

(α̂kdl, α̂
k+1dl), for k = 0 . . . dlog3α/4 υ(p, S′)e.

For each such k, consider the set Sk of c ∈ S′ such that d(c) ∈ (α̂kdl, α̂
k+1dl).

Construct a packing S′k ⊂ Sk using Theorem 5, such that d(c, S′k) ≤ α̂k+1dl/3
for all c ∈ Sk. Since d(c, p) ≤ αd(c) ≤ αα̂k+1dl, the size of S′k need be at most
S3α.

Now for each c ∈ Sk, there is some c′ ∈ S′k with

d(c, c′) ≤ α̂k+1dl/3 ≤ αd(c)/4,

and so if c′
1−→ g′, then

d(c, g′) ≤ d(c, c′) + d(c′, g′) ≤ αd(c)/4 + α̂k+1dl ≤ αd(c)/4 + 3αd(c)/4 = αd(c).

Then
Ĝ ≡ ∪k{g′ ∈ R | c′ 1−→ g′, c′ ∈ S′k}

satisfies the conditions of the lemma.

Lemma 25 The algorithm for finding Ĝ needs

O(|G||Ĝ|) = O(Aα|Ĝ|)

expected time.

Proof. This is clear from the algorithm, and the bound on |G| is from the
definition of Aα.

24

4.10 Concluding Analysis

Before considering the time complexity, we should note correctness.

Theorem 26 Algorithms M.1 and M.2 find the points for which a site p is
γ-nearest in R.

Proof. This follows from Lemmas 18 and 20.

Theorem 27 The all-nearest-neighbors problem can be solved for a metric space
with a sphere-packing bound in

O(n)(log n)2(log Υ)2

expected time, for parameters α and γ satisfying 4/3 < α ≤ γ.

Proof. The bounds given by Lemmas 19, 21, 22, 23, and 25 are dominated
by O(Amax{γ′′,2(γ′+1)}|Ĝ| log n).

Using the definition of Aβ , we obtain an expected bound on the order of

n

i

(
Nmax{γ′′,2(γ′+1)},Υ|Ĝ| log n

)
for the cost of adding p to R of size i. The size of Ĝ is O(S3α(log3α/4 Υ))
from Lemma 24. Using this bound, the hypothesis that α > 4/3 is fixed, and
summing over i up to n gives a total expected cost

O(n log2 n)Nmax{γ′′,2(γ′+1)},ΥS3α log Υ.

Finally, from Lemma 7, the total expected cost is

O(n log2 n)(Smax{γ′′,2(γ′+1)}S3α log2 Υ),

or, neglecting constants, O(n(log n)2(log Υ)2).

Theorem 28 If Q and S are random subsets of Q ∪ S, and V has a sphere-
packing bound, then M(S, Q) can be built in

O(Kn)(log n)2(log Υ(S ∪Q))2

expected time.

Proof. Apply the algorithm of this section to S∪QKn, adding the elements of
S first. The resulting γ-nearest neighbor information is exactly what is needed
for the data structure.

25

5 Data Structure D(S)

This section will describe another approach to the post office problem, in this
same setting, but with some differences: the algorithm always returns the correct
answer, and does not require Q, but requires somewhat more space and query
time. The algorithm can be analyzed using the exchangeability assumption,
where a query point q is a random element of {q} ∪ S.

The algorithm uses a divide-and-conquer scheme apparently somewhat like
Brin’s[Bri95].

In this section, the values Nγ,Υ(R) will be considered for various subsets
R of S. We’ll use the uniform bound Nγ,Υ(S), abbreviated just as Nγ . Re-
call Lemma 7, that if (V, d) obeys a sphere-packing bound, then Nγ,Υ(S) ≤
S2γ lg Υ(S).

Preprocessing. Given a set of n sites S ⊂ V , the data structure D(S) is built
as follows: take a random subset R of S. Recursively build the data structure
D(R) for R, and then find, for each p ∈ S \R, its nearest neighbor in R. Let S1

a

denote the sites in S \R that have a ∈ R as nearest neighbor. For each a ∈ R,
build a list La of sites of R, in nondecreasing order of their distance to a. For
each c ∈ S1

a, find the 3-nearest neighbors of c in R as follows: Walk down the
list La, checking for each site b ∈ R if b is 3-nearest to c in R. Stop this traversal
of La when d(a, b) > 4d(c, a). For a ∈ R, let S3

a denote the set of sites in S with
a as 3-nearest neighbor. Recursively build D(S3

a).
This completes the preprocessing. The data structure D(S) comprises D(R),

the lists La for a ∈ R, and the recursively built data structures D(S3
a) for a ∈ R.

For convenience of analysis, the construction will use random subsets of size
rk ≡ n1/2k+1

at recursion depth k, and terminate the recursion at k = ln ≡
dlg lg ne. (The construction of D(S) for the original input is at depth 0; when
constructing D(S) at depth k, the construction of the data structures D(S3

a)
and D(R) are at depth k + 1.) The recursion bottoms out by simply storing
the sites in a list, at recursion depth ln, or when the set has fewer than some
constant number of members.

Answering Queries. To find the nearest site to a point q, use the data struc-
ture D(R) to find the nearest neighbor a of q in R. Next find the 3-nearest
neighbors of q in R as in the preprocessing. For each b that is 3-nearest neigh-
bor to q in R, recursively search D(S3

b) for the closest site in S3
b to q. Return

the closest site found by all such searches.
The recursion bottoms out by searching the list of sites in linear time.
There are a few correctness conditions to verify.

Theorem 29 The query and preprocessing algorithms find all 3-nearest neigh-
bors of q and of sites in S \R . The query procedure returns the closest site in
S to q.

Proof. Suppose b is a 3-nearest neighbor of a site p with nearest neighbor a

26

in R, or a
1←− p

3−→ b with respect to R. Then d(a, b) ≤ 4d(p, a) by Lemma 15.
Thus d(b, a) ≤ 4d(p, a) is necessary for b to be a 3-nearest neighbor of p.

The query procedure is correct: if c ∈ S and b ∈ R have q
<1−→ c

1−→ b with
respect to R, then q

3−→ b by Lemma 16. In othe words, the nearest neighbor
b to c is a 3-nearest neighbor of q, and the query procedure will find c when
recursively searching S3

b .

Rather than store La as a sorted list, as described above, it is enough to store
the entries in a heap. With appropriate heap ordering relations, all members
of La at a distance closer than a value X can be found in constant time per
reported member, using a recursive traversal of the heap, just as for sorted lists.
The heaps for sites a ∈ R can be built in constant time per entry, however, unlike
sorted lists; this might be a bit faster in practice, and simplifies the analysis.

Lemma 30 The expected size of a set of sites considered at recursion depth k
is

O(N3)kn1/2k

.

Proof. Suppose inductively that the expected size of the set W in the parent
recursion, at depth k− 1, is m = O(N3)k−1n1/2k−1

, as is plainly true for k = 1.
One branch of recursion considers R ⊂ W of size n1/2k

, which satisfies the
claim. Other branches of recursion apply to sets W 3

a , which have expected
sizes O(N3)m/rk−1 using Lemma 10. (Note that the expectation for W 3

a is
with respect to the random choice of R, while the expectation for |W | is from
random choices at lesser recursion depth; hence the expectations can be “mixed”
in this fashion.) Since rk−1 ≡ n1/2k

, the result follows.

Theorem 31 Suppose metric space (V, d) has a γ-nearest neighbor bound, and
S ⊂ V is a set of n sites. Suppose q is a random element of {q} ∪ S. Then the
expected time to find the closest site in S to q using D(S) is

N5(lg n)O(1)+2 lgN3

as n→∞.

Proof. Consider the query procedure for a set T at depth k in the recursion.
Let Z(k) denote the expected time for the query procedure applied to a set
at depth k, so that the expected time overall is Z(0). Let R be the random
subset of T used at that step. The set T is a random subset of S, subject to
the 3-nearest neighbor conditions used in passing down the recursion. Since q
is a random element of {q} ∪ S, and subject to the same 3-nearest neighbor
conditions (or else T would not be considered for q), q is a random element of
{q}∪R. Thus the expected time to search D(R) is Z(k +1). Using the triangle
inequality, each site b examined in finding 3-nearest neighbors of q satisfies

d(b, q) ≤ d(b, a) + d(a, q) ≤ 5d(a, q).

27

From Lemma 11, the expected work in examining such b is O(N5). The expected
work done recursively can be expressed as the sum, over b ∈ T , of Z(k+1), times
the probability that b is in R and is a 3-nearest neighbor of q. The correctness
of this claim requires the observation that q is a random element of {q} ∪ T 3

b .
The probability that b is a 3-nearest neighbor of q in R is O(N3)/|T |, using
Lemma 11. The expected query time is therefore

Z(k) ≤ Z(k + 1) + O(N5) + O(N3)/|T |
∑
a∈T

Z(k + 1),

or
Z(k) ≤ Z(k + 1) + O(N5) + O(N3)Z(k + 1),

for k smaller than the recursion depth ln and |T | large. From Lemma 30, the
expected size of the sets T at the bottom level is O(N3)ln , and this bounds the
expected cost at the bottom level of recursion. The overall expected cost is

O(N5)O(N3 + 1)lnO(N3)ln ,

which implies the expected time bound claimed.

Theorem 32 Suppose metric space (V, d) has a γ-nearest neighbor bound, and
S ⊂ V is a set of n sites. Then the expected time to build D(S) is

O(n)N5(lg n)O(1)+2 lgN3

as n→∞.

Proof. The general step of the algorithm builds a data structure for a set
T at recursion depth k. Let Y (k) denote the expected time needed to build
the data structure for such a set T . The expected cost of building D(R) is
Y (k + 1); the expected cost of finding the nearest neighbors in R of each site
can be bounded at Z(k + 1) per site; the expected cost of finding 3-nearest
neighbors in R of each site is O(r2

k) + O(N5)|T |, since each b examined in a list
La for site c ∈ T 1

a is 5-nearest neighbor to c; the number of such neighbors is
bounded using Lemma 11, averaging over all c ∈ T \ R. Construction of the
heaps La, for a ∈ R, requires O(r2

k) = O(n1/2k

) altogether. Finally, the work
in building the data structures D(T 3

b) requires time proportional to the sum,
over b ∈ T , of the probability rk/|T | that b ∈ R ⊂ T , times the expected work
Y (k + 1) for T 3

b . Thus the work Y (k) satisfies

Y (k) ≤ Y (k + 1) + Z(k + 1)|T |+ O(N5)|T |+ O(n1/2k

) + rkY (k + 1),

or using the bound E|T | ≤ O(N3)kn1/2k

of Lemma 30,

Y (k) ≤ (Z(k + 1) + O(N5))O(N3)kn1/2k

+ O(n1/2k

) + (n1/2k+1
+ 1)Y (k + 1),

with Y (ln) ≤ O(N3)ln , giving the result claimed.

28

Theorem 33 Suppose metric space (V, d) has a γ-nearest neighbor bound, and
S ⊂ V is a set of n sites. Then the expected space for D(S) is

O(n)(lg n)O(1)+lgN3

as n→∞.

Proof. The total space requires for all lists La at each depth k is O(n); the
total expected space required for sets at the bottom of the recursion is nO(N3)ln ,
with ln ≡ dlg lg ne, and this gives the bound.

5.1 Remarks

The algorithm recursively builds data structures for sets S3
b , the sites having

b as 3-nearest neighbor in R, rather than for S1
b , those having b as nearest

neighbor. The query procedure would still be correct if the latter procedure
were followed, and the space required would be O(n), since the sites would be
partitioned at each step. So far, it hasn’t been clear how to analyze such an
attractive algorithm.

It is a bit artificial to have a fixed schedule of sample sizes, rk ≡ n1/2k+1
; a

more natural sample size would be simply to use the square root of the set size
|T |. This seems to be more difficult to analyze, and still seems artificial: why
not use a constant sample size, or n/2? However, a smaller sample size would
have an even bigger blowup in cost, due to the imperfect nature of the divide-
and-conquer scheme used. A larger sample size runs into the apparent need
for Ω(r2) space, to hold the lists La that are used to find 3-nearest neighbors.
While the choice of r is not tuned to be best possible, it seems close to the only
alternative with the ideas available.

In <k space with an Lp norm, the expected query time takes the form

(lg n)O(k)+lg lg Υ.

5.2 γ-queries and inverse queries

The data structure can be extended in two ways that are sometimes useful. The
first extension is to allow finding all γ-nearest neighbors of a query point, not
just the nearest neighbors. The other extension is to allow inverse queries, for
a point p and subset R ⊂ S, that return sites z ∈ S \R for which p is γ-nearest
to z in R.

We will here only sketch the straightforward extension to build a data struc-
ture Dγ(S) that allows γ-nearest neighbor queries; the change is basically to
replace finding 3-neighbors by finding (1 + 2γ)-neighbors, to maintain S1+2γ

a

instead of S3
a, to search lists only when d(a, b) ≤ (2 + 2γ)d(b, q) instead of a

multiplier of 4, and to replace N5 in the analysis by N3+2γ , and N3 by N1+2γ .

29

Theorem 34 Suppose metric space (V, d) has a γ-nearest neighbor bound, and
S ⊂ V is a set of n sites. The expected time to build Dγ(S) is

O(n)A(lg n)O(1)+2 lg B

as n→∞, and the expected query time is

A(lg n)O(1)+2 lg B .

Here
A = N3+2γ,Υ(S)

and
B = N1+2γ,Υ(S),

which are O(log Υ(S)) as a function of S when (V, d) has a sphere-packing
bound.

Given random R ⊂ S, it is possible to build a data structure for inverse
neighbor queries: given point p, quickly find all q ∈ S \ R such that p is a
γ-nearest neighbor to q in {p} ∪R.

One approach is the following: build the data structure D1+γ(R), and use
it to find the nearest neighbor, and all (1 + γ)-nearest neighbors, in R of all
q ∈ S \R. For each c ∈ R, find the sets S1+γ

c of q that have c as (1 + γ)-nearest
neighbor in R, and the analogous set S1

c . Store these sets in heaps, so that all
q in them with d(q, c) greater than some value can be found in constant time
per Q.

With this preprocessing, for given p, find its (1 + γ)-nearest neighbors in
R, including its nearest neighbor a. Examine all q ∈ S1+γ

a that have d(a, q) ≥
d(a, p)/(1 + γ), and check if they have p as γ-nearest. For each b ∈ R that is
(1 + γ)-nearest to p in R, examine the set S1

b of q that have b as nearest in R,
and check all such q that have d(b, q) ≥ d(a, p) and d(b, q) ≥ d(b, p)/(1 + γ), to
see if p is a (1 + γ)-nearest neighbor.

This completes the query procedure.

Theorem 35 The inverse neighbor procedure finds all q with p γ-nearest in
{p} ∪R.

Proof. In the procedure, suppose a is nearest to p, b is nearest to q, and p is a
γ-nearest neighbor of q. If d(a, p) ≥ d(b, q), then p has b as (1+γ)-nearest, using
the triangle inequality, while if d(a, p) ≤ d(b, q), then q has a as (1 + γ)-nearest.
Moreover, if d(p, q) ≤ γd(b, q), then d(p, b) ≤ d(p, q) + d(q, b) ≤ (1 + γ)d(b, q),
and similar reasoning applies to q ∈ T 1+γ

a with d(p, q) ≤ γd(a, q).

Theorem 36 Suppose metric space (V, d) has a γ-nearest neighbor bound, and
S ⊂ V is a set of n sites. Then the preprocessing time for the above data
structure for inverse γ-nearest neighbor queries is the same as for (1 + γ)-
neighbor queries, and if p is random in {p} ∪S, then the expected query time is
the time for a (1+γ)-neighbor query, plus O(N1+γ,Υ(S))+O(N2+γ,Υ(S))|S|/|R|.

30

Proof. Every b examined is a (1+γ)-nearest neighbor of p, and the expected
number of such b is bounded by Lemma 11. Every q examined has p as a (2+γ)-
nearest neighbor, and is examined at most twice, once as a member of T 1

b and
once as a member of S1+γ

a . The result follows from Lemma 10.

6 Conclusions

This paper has shown that nearest neighbor problems can be solved efficiently,
even when no information about the distance measure is given explicitly. Ver-
sions of some of the algorithms given here have been implemented, with promis-
ing results which will be reported elsewhere.

It is worth noting that the failure probability analysis and query time anal-
ysis do not depend on the triangle inequality, but only the sphere-packing prop-
erties, and there could be (V, d) which is not even a metric space, but for which
these results hold, or for which the algorithms are effective in practice.

While it is satisfying that the preprocessing for M(S, Q) is nearly linear, the
time bound is higher than one would like, and worse, the space for the con-
struction degrades to Ω(n2) in high dimension. Is there a different construction
without this flaw?

Acknowledgments. I’d like to thank the anonymous referees for their
thoughtful comments.

References

[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Int.
Conf. on Very Large Data Bases, pages 574–584, 1995.

[Cla83] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem.
In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pages 226–
232, 1983.

[Cla88] K. L. Clarkson. A randomized algorithm for closest-point queries.
SIAM Journal on Computing, 17:830–847, 1988.

[Cla92] K. L. Clarkson. Randomized geometric algorithms. In D.-Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of
Lecture Notes Series on Computing, pages 117–162. World Scientific,
Singapore, 1992.

[FC96] C. Faloutsos and V. Caede. Analysis of n-dimensional quadtrees using
the Hausdorff fractal dimension. In Proc. 22nd Int. Conf. on Very
Large Data Bases, 1996.

[FS82] C.D. Feustel and L. G. Shapiro. The nearest neighbor problem in an ab-
stract metric space. Pattern Recognition Letters, 1:125–128, December
1982.

31

[MR86] R. Motwani and P. Raghavan. Deferred data structuring: query-driven
preprocessing for geometric search problems. In Proc. 2nd Annu. ACM
Sympos. Comput. Geom., pages 303–312, 1986.

[Mul93] K. Mulmuley. Computational Geometry: An Introduction Through
Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

[Uhl91] J. K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees. Inform. Proc. Letters, 40:175–179, 1991.

[Vai89] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors
problem. Discrete Comput. Geom., 4:101–115, 1989.

[Yia93] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proc. 4th ACM-SIAM Sympos.
Discrete Algorithms, pages 311–321, 1993.

32

