

More Output-Sensitive Geometric Algorithms

Ken Clarkson

AT&T Bell Labs

Murray Hill, NJ

http://netlib.att.com/netlib/att/cs/home/clarkson.html

1

Finding Extrema

Given a set S of n sites,

find extremal F ⊂ S, |F | = A < n.

• vertices of convS;

• coordinate-wise minima of S;

• minima in a partial order of S;

2

An O(nA) algorithm

Examine each site p in turn,

adding it to E ⊂ F or throwing it out.

• if E proves p /∈ F , throw out p;

• otherwise,

– use p to find q ∈ F \ E;

– add q to F ;

First step: O(|E|) = O(A) per point of S; Sec-

ond step: O(n) per point of F ;

O(nA) time overall.

3

Coordinatewise Minima

To prove p /∈ F using E,

find z ∈ E dominating p.

To find q ∈ F \ E using p:

look through S \ E,

maintaining t, initially p:

if a new point q is dominated by t, throw out

q;

if q dominates t,

throw out t and replace it by q.

4

In the plane,

for sites coordinate-wise independent,

n + O(n5/8)

comparisons on average.

First member of E kills almost all sites.

Apparently nontrivial analysis.

Comparable to [BCL] on average,

plus worst-case bound.

5

Why the analysis is nontrivial

[[graphics could not be recovered]]

Four traces of t

that gives first point in E,

220 points uniform in [220,220].

First intuition: arrive at (220/
√
n,220/

√
n) =

(210,210).

6

Extreme Points

To check if p might be extremal: solve an LP

to find witness vector v with

v · p > max
x∈E

v · x

if no such v, p ∈ convE ⊂ convF .

Use p to find q ∈ F \ E: q gives maxx∈S v · x.

q cannot be in E, and must be in F .

7

O(nA) time is apparently new.

Polynomial in dimension d,

up to linear programming.

Slightly sharper bounds are attainable,

replacing n2 in bounds by nA.

8

Other Results

• Space-efficient convex hulls

– apply idea inductively in d;

– use lexicography for tie-breaking;

– O(n)/edge of face graph.

• O(n logA) convex hulls when expected hull

size is O(r) for R ∈R
(
S
r

)
.

• Thinning for nearest neighbor

classification.

9

O(n logA) convex hulls

Maintain hull of random subset R,

and visibilities of points in S \R
(the conflict graph)

Also: maintain convE, E ⊂ F ,

with |E| ≈ r/ log r.

Use:

• convR to update quickly,

• convE to quit early.

10

Assume A� n.

Maintain E using previous algorithm,

but find witness vector

after building DK decomposition for convE,

so that O(log |E|) time/point needed.

Find q ∈ F \ E by using

a few of the conflict lists for convR.

11

NN Thinning

Nearest Neighbor classification:

sites have colors;

given a query point,

color it by nearest site.

Thinning:

Delete all possible sites allowing color to be

preserved.

A site is redundant and can be thinned, if

all its Delaunay neighbors are the same color.

12

Generating all Delaunay neighbors requires

O(n3) time, as above.

Ideas here give an algorithm needing

O(n logn)
∑
i

Aini

time, ni sites of color i, Ai irredundant.

As before, maintain

Ei, a set of irredundant sites of color i.

For each p,

either Ei proves p redundant, or

there is site w with color not i,

and point x,

with x equidistant from p and w,

and closer to them than to any site in Ei.

A walk along p→ x→ w gives a site q ∈ Fi \Ei.

13

Concluding Remarks

• Algorithms not exponential in d,

except maybe LP;

• A simpler O(n logA) algorithm should be

possible.

14

