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Finding Extrema

Given a set S of n sites,

find extremal F ⊂ S, |F | = A < n.

• vertices of convS;

• coordinate-wise minima of S;

• minima in a partial order of S;
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An O(nA) algorithm

Examine each site p in turn,

adding it to E ⊂ F or throwing it out.

• if E proves p /∈ F , throw out p;

• otherwise,

– use p to find q ∈ F \ E;

– add q to F ;

First step: O(|E|) = O(A) per point of S; Sec-

ond step: O(n) per point of F ;

O(nA) time overall.
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Coordinatewise Minima

To prove p /∈ F using E,

find z ∈ E dominating p.

To find q ∈ F \ E using p:

look through S \ E,

maintaining t, initially p:

if a new point q is dominated by t, throw out

q;

if q dominates t,

throw out t and replace it by q.
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In the plane,

for sites coordinate-wise independent,

n + O(n5/8)

comparisons on average.

First member of E kills almost all sites.

Apparently nontrivial analysis.

Comparable to [BCL] on average,

plus worst-case bound.

5



Why the analysis is nontrivial

[[graphics could not be recovered]]

Four traces of t

that gives first point in E,

220 points uniform in [220,220].

First intuition: arrive at (220/
√
n,220/

√
n) =

(210,210).
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Extreme Points

To check if p might be extremal: solve an LP

to find witness vector v with

v · p > max
x∈E

v · x

if no such v, p ∈ convE ⊂ convF .

Use p to find q ∈ F \ E: q gives maxx∈S v · x.

q cannot be in E, and must be in F .
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O(nA) time is apparently new.

Polynomial in dimension d,

up to linear programming.

Slightly sharper bounds are attainable,

replacing n2 in bounds by nA.

8



Other Results

• Space-efficient convex hulls

– apply idea inductively in d;

– use lexicography for tie-breaking;

– O(n)/edge of face graph.

• O(n logA) convex hulls when expected hull

size is O(r) for R ∈R
(
S
r

)
.

• Thinning for nearest neighbor

classification.
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O(n logA) convex hulls

Maintain hull of random subset R,

and visibilities of points in S \R
(the conflict graph)

Also: maintain convE, E ⊂ F ,

with |E| ≈ r/ log r.

Use:

• convR to update quickly,

• convE to quit early.
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Assume A� n.

Maintain E using previous algorithm,

but find witness vector

after building DK decomposition for convE,

so that O(log |E|) time/point needed.

Find q ∈ F \ E by using

a few of the conflict lists for convR.
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NN Thinning

Nearest Neighbor classification:

sites have colors;

given a query point,

color it by nearest site.

Thinning:

Delete all possible sites allowing color to be

preserved.

A site is redundant and can be thinned, if

all its Delaunay neighbors are the same color.
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Generating all Delaunay neighbors requires

O(n3) time, as above.

Ideas here give an algorithm needing

O(n logn)
∑
i

Aini

time, ni sites of color i, Ai irredundant.

As before, maintain

Ei, a set of irredundant sites of color i.

For each p,

either Ei proves p redundant, or

there is site w with color not i,

and point x,

with x equidistant from p and w,

and closer to them than to any site in Ei.

A walk along p→ x→ w gives a site q ∈ Fi \Ei.
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Concluding Remarks

• Algorithms not exponential in d,

except maybe LP;

• A simpler O(n logA) algorithm should be

possible.
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