
Algorithms for Polytope Covering and

Approximation, and for Approximate

Closest-point Queries

draft ∗

Kenneth L. Clarkson
AT&T Bell Laboratories

Murray Hill, New Jersey 07974
e-mail: clarkson@research.att.com

Abstract

This paper gives an algorithm for polytope covering : let L and U be
sets of points in Rd, comprising n points altogether. A cover for L from
U is a set C ⊂ U with L a subset of the convex hull of C. Suppose c is
the size of a smallest such cover, if it exists. The randomized algorithm
given here finds a cover of size no more than c(5d ln c), for c large enough.
The algorithm requires O(c2n1+δ) expected time.1 More exactly, the time
bound is

O(cn1+δ + c(nc)1/(1+γ/(1+δ))),

where γ ≡ 1/bd/2c. The previous best bounds were cO(log n) cover size
in O(nd) time.[MS92b] A variant algorithm is applied to the problem of
approximating the boundary of a polytope with the boundary of a sim-
pler polytope. For an appropriate measure, an approximation with error
ε requires c = O(1/ε)(d−1)/2 vertices, and the algorithm gives an approxi-
mation with c(5d3 ln(1/ε)) vertices. The algorithms apply ideas previously
used for small-dimensional linear programming. The final result here ap-
plies polytope approximation to the the post office problem: given n points
(called sites) in d dimensions, build a data structure so that given a query
point q, the closest site to q can be found quickly. The algorithm given here
is given also a relative error bound ε, and depends on a ratio ρ, which is
no more than the ratio of the distance between the farthest pair of sites to
the distance between the closest pair of sites. The algorithm builds a data
structure of size O(n(log ρ)/εd/2 in time O(n2(log ρ))/εd. With this data
structure, closest-point queries can be answered in O(log n)/εd/2 time.

∗This manuscript merges [Cla93] and [Cla94]
1In this paper, δ will denote any fixed value greater than zero.

1

1 Introduction

Applications in graphics, design, and robotics lead to the problem of approxi-
mating a surface by a simpler one. The results here apply to the special case of
approximating a surface that is the boundary of a convex body.

If P is a convex polytope (polyhedron) in Rd, then for ε > 0, the points
within `1 distance ε of the boundary of P lie between the boundaries of two
nested convex polyhedra A and B with A ⊂ P ⊂ B. Thus the problem of
finding a polytope P ′ with few facets whose boundary is close to that of P
is reducible to that of separating two nested convex polyhedra by a polytope
with few facets. In this way, an approximation problem leads naturally to a
separation problem. Unfortunately, finding a minimal-facet separating polytope
for arbitrary nested polyhedra is NP-hard[DJ90], and we hope only to find a
polynomial-time algorithm that gives a separating polytope whose number of
facets is within a small factor of the smallest possible number. Such an algorithm
is given in §3.

It is not hard to show that if P ′ is any polytope separating A and B, then
there is a coarsening A′ of A that also separates A and B, such that A′ has at
most d times as many facets as P ′. What is a “coarsening”? Recall that A can
be described as the intersection of a family of halfspaces H(A): A = ∩H∈H(A)H.
A coarsening of A is a polytope of the form ∩H∈H′H, where H′ ⊂ H(A). Thus
in trying to find a simple separating polytope, we give away only a factor of d
by restricting ourselves to coarsenings. This simple but crucial observation was
made by Mitchell and Suri[MS92b].

Using projective duality, the problem of finding a coarsening with few facets
is linear-time equivalent to finding a covering with few points: let L be a set
of ` points in convex position, and let U be a set of u points, both in Rd. A
cover for L from U is a set C ⊂ U with L a subset of the convex hull of C.
Seeking C with as few points as possible is equivalent to seeking a coarsening
of A contained in B with as few facets as possible.

This paper gives an algorithm for covering such that the number of points
in the returned cover is O(d log c) times the optimal number c. This implies an
algorithm for separation that finds a polytope with O(d2 log c) times as many
facets as optimal. In the version of the approximation problem discussed above,
the optimal cover size c = O(d/ε)d−1, independent of the combinatorial com-
plexity of the polytope being approximated; hence the algorithm given below for
covering can be applied to find an approximation within a factor of 5d3 ln(1/ε)
of optimal in number of vertices, as discussed in §3.

This dependence on ln c (and so ln(1/ε)) contrasts with previous results on
this problem for d > 2, where the corresponding factor is log n.[MS92b] More-
over, the algorithm given here is faster, sometimes much faster, than the previ-
ous O(nd); the new algorithm requires, in its simplest form,

O(c2` log c + cu) log(u/c)

2

expected time: linear in n ≡ ` + u for fixed c, and always n3 logO(1) n. (A more
complicated form of the algorithm has expected running time cn1+δn for d = 3.)

The algorithm is Las Vegas, and makes random choices; the expectation is
with respect to the algorithm’s behavior and independent of the input points.

The algorithm applies ideas used previously for linear programming[Cla88].

2 The covering algorithm

We will assume that the points of L and U are in general position: no d + 1 are
on the same hyperplane. For points p and q, say that p and q see each other, or
are visible to each other, if the (relatively open) line segment pq does not meet
P . Say that q and a facet F of a polytope P see each other if every p ∈ F sees
q. (Note that q sees F if and only if it sees at least one point of the relative
interior of F .) A point q sees F if and only if q is in the halfspace bounded by
the hyperplane through F and not containing P .

Let conv S denote the convex hull of the point set S.

Fact 2.1 Let F be a facet of a polytope P . A point q sees F if and only if F is
not a facet of conv P ∪ {q}. Moreover, q is contained in P if and only if q sees
no facets of P .

The algorithm needs answers to visibility queries: given a set S of n points
in general position, and point p, the answer to such a query is a facet of conv S
visible to p, or the answer that p ∈ conv S and no such facet exists. Visibility
queries can be answered in O(n) time using linear programming (e.g.,[Cla88]);
with m1+δ preprocessing, for any fixed δ > 0, queries can be answered in
O(n(log2d+1 n)/mγ) time, where γ ≡ 1/bd/2c.[MS92a]

Let C ⊂ U be some optimum cover of L, so |C| = c. The statement of
the algorithm assumes that the optimal cover size c is known; this is no loss of
generality, as discussed at the end of this section.

The development of the algorithm begins with Fact 2.1 above: for R ⊂ U ,
if L is not contained in conv R, then there is a facet F of conv R that is visible
to some point p ∈ L. Moreover, F must be visible to some point q ∈ C, since
otherwise F is a facet of conv R ∪ C, which implies p /∈ conv R ∪ C ⊃ conv C.
Let UF be the set of points of U that see F . Then there is a point of C in the
set UF .

Lemma 2.2 below says that when R is a random subset of U , then UF

contains few points. Hence some information about C has been obtained: a
small known set contains one of its members.

This may motivate the following algorithm outline, that closely follows an
algorithm for linear programming[Cla88]: let each p ∈ U have a weight wp, with
wp := 1 for all p ∈ U initially. Let w(V) denote

∑
p∈V wp for V ⊂ U . Repeat

the following: choose random R ⊂ U , by choosing each p ∈ U independently to
be in R with probability 1 − (1 − wp/w(U))r ≤ rwp/w(U), where r = c4d ln c.

3

For each point p ∈ L in turn, make visibility queries with respect to R; if there
are no facets of conv R visible to a point p ∈ L, output R as a cover and quit.
If there is such a facet F , and w(UF) ≤ w(U)/2c, then double the weights of
the points of UF , so wp ∗= 2 for p ∈ UF . This completes the loop.

We turn to the analysis of this algorithm. Say that an iteration of the loop
is successful if the weights were changed: there was a facet F visible to a point
in L and with |UF | ≤ w(U)/2c. Call a facet of conv R an L-facet if it is seen by
a point in L.

For a time bound, we need to know the chance of a successful iteration.

Lemma 2.2 Given that an L-facet is found, the probability that an iteration
will be successful is at least 1/2.

Proof. We show that with high probability, every facet of conv R is seen by
few points of U ; this follows easily from ancient results[HW87, Cla87], but is
included for completeness. Suppose F is a potential facet of conv R: an oriented
simplex with d vertices in U , with at least j points UF ⊂ U on its positive side.
The convex hull of R will have F as a facet if and only if its d vertices are in R,
and points UF that see F are not in R. The probability of this event for given
F is ∏

p∈|F

(1− (1− wp

w(U)
)r)

∏
p∈UF

(1− wp

w(U)
)r ≤

∏
p∈|F

rwp

w(U)
e−rw(UF)/w(U)

≤ rd

w(U)d
e−rj/w(U)

∏
p∈|F

wp.

Let
(
U
d

)
denote the set of subsets of U of size d. Since each V ∈

(
U
d

)
gives two F ,

it remains to bound ∑
V ∈(U

d)

∏
p∈V

wp,

subject to the conditions
∑

p∈U wp = w(U) and |U | = n. It’s not hard to show
that this expression is maximized when all wp = w(U)/n, and so the probability
that any facet of conv R is seen by more than j points of U is

rd

w(U)d
e−rj/w(U)

(
n

d

)
(w(U)/n)d ≤ rd

nd

(en)d

dd
e−rj/w(U)

=
(er

d

)d

e−rj/w(U),

which is less than 1/2 for j = n/2c, r ≥ c(4d ln c), and c large enough.

Lemma 2.3 The expected number of iterations is at most 1 + 8c lg(u/c).

4

Proof. The proof follows arguments of Littlestone[Lit87] and Welzl[Wel88].
By Lemma 2.2, the number of “successful” iterations, in which the weights of UF

are changed, is on average at least half the total number of iterations. Consider
the total weight w(U). At each successful iteration, w(U) increases by a factor of
1 + 1/2c < e1/2c < 23/4c. After I successful iterations, w(U) ≤ u23I/4c. On the
other hand, as noted above, UF contained a member of C, and so that member is
doubled in weight. Hence after I successful iterations, w(C) ≥

∑
p∈C 2zp , where∑

p∈C zp = I, and so by the convexity of the exponential function, w(C) ≥ c2I/c.
Since w(C) ≤ w(U), the algorithm does at most 4c lg(u/c) successful iterations,
or 8c lg(u/c) iterations on average.

Theorem 2.4 Let γ ≡ 1/bd/2c, and let δ be any fixed value greater than zero.
For known c, a cover of size no more than c(4d ln c) can be found in

O(u1+δ + c`1+δ + c(`c)1/(1+γ/(1+δ)) + (uc)1/(1+γ/(1+δ)))

expected time, using sophisticated data structures. A simpler algorithm requires
O(`c log c + u)c log(u/c) expected time.

Proof. First consider the time needed for finding sets UF and reweighting
their points, over the whole algorithm. This requires answering O(c log(u/c))
range queries on average, on a set of u points; with a simple algorithm, this
requires O(uc log(u/c)) time. Using sophisticated data structures, however,
O(u1+δ + (uc)1/(1+γ/(1+δ))) expected time can be achieved, by trading off pre-
processing time for query time.[Mat92]

It remains to bound the time required for answering visibility queries dur-
ing each iteration; this requires answering no more than ` visibility queries
on a set of points with expected size r = O(c log c). Using linear-time linear
programming, this step requires O(`c log c) expected time per iteration. By
again trading off preprocessing for query time, the queries can be answered in
O(`1+δ + (`c)1/(1+γ/(1+δ))) time.[MS92a] This is multiplied by O(c log(u/c)) for
the bound.

(This has ignored any correlation between |R| and |UF |; it is quite likely that
|R| < 5r, so if the algorithm is changed to make an iteration successful only if
this holds, the change in E|UF | will be slight.)

If the size c of an optimal cover is not known, the algorithm can postulate
c = (5/4)i for i = lg d, lg d + 1, . . ., and stop execution for a given value (5/4)i

if the number of successful iterations exceeds the proven bound for covers of
that size. In this way the cover returned is no more than 5/4 as big as that
for known c, and the work is dominated asymptotically by the work for the
returned cover.

5

3 Approximation of polytopes

This section considers a polytope approximation problem: using the `1 distance
measure, and given a set S of n points, find a polytope Q such that every point
of P ≡ conv S is within ε distance of some point of Q, and every point of Q is
within ε of some point of P . That is, suppose B is the set of points no farther
than ε from the origin. We seek Q such that Q ⊆ P + B and P ⊆ Q + B, with
Q having as few vertices as possible. Here P + B ≡ {p + b | p ∈ P, b ∈ B}.

(An alternative approximation problem is simply to scale P by some 1 + ε,
and solve the resulting separation problem. For very “flat” polytopes, this
problem is plainly quite different from the one above, and arguably less useful.)

First, with small loss we need consider only a finite set of possible vertices
for an approximating polytope. Let E be the set of 2d extreme points of B:
these have coordinates all zero, except one that is either ε or −ε.

Lemma 3.1 If Q is an approximating polytope, there is another approximating
polytope Q′ that has vertices in S+E, and with at most d times as many vertices
as Q.

Proof. Since Q ⊂ P+B = conv S+E, by a slight extension of Caratheodory’s
theorem, one can pick an arbitrary v ∈ Q such that each vertex of Q is a convex
combination of d points of S + E together with v. For each vertex of Q, pick
such points in S + E and include them in a set C. So Q′ ≡ conv C has no more
than d times as many vertices as Q, and Q′ is an approximating polytope since
P ⊂ Q + B ⊂ Q′ + B and Q′ ≡ conv C ⊂ conv S + E = P + B.

We now have a covering problem: choose small C ⊆ S + E such that P ⊂
B + conv C. (Again, note that conv C ⊂ P + B.)

To solve this problem, change the algorithm of the last section slightly: while
the set U here is S + E, and the set L is S, we seek an “L-facet” that is a facet
not of conv R, but of conv R + E, for R ⊂ S + E. The set UF is computed not
as the points of U that see F , but rather as the points p ∈ U such that there is
some e ∈ E such that p + e sees F .

With these changes, and with r = c5d3 ln(1/ε), the algorithm and its analysis
are analogous to that for the covering problem; the only change in the analysis
is the bound on potential L-facets: rather than 2

(
r
d

)
, it is 2

(
2dr
d

)
, since facets

have vertices in R + E, not just R.
Just how large can c be? Dudley showed the following.[Dud74]

Lemma 3.2 Let P ⊂ Rd be compact and convex, and contained in a ball of
radius 1. There is a convex polytope P ′ ⊃ P with O(1/ε(d−1)/2 facets, and with
P ′ within Haussdorf distance 1/ε of P .

The estimate c = O(d/ε)d−1 assumes that P is contained in an `∞ ball of
radius one. Consider the regular grid of points with coordinates that are integral
multiples of 2ε/d; every point of the boundary of P is within `∞ distance ε/d

6

of such a point, and so within `1 distance ε. Thus C can be taken to be the
set of such grid points within `∞ distance ε/d. Letting A(P) denote the surface
area of P , the number of such grid points is A(P)(d/2ε)d−1(1 + O(ε/d)), and
since P is contained in a cube of side length 2, A(P) ≤ d2d, yielding a bound
of d(d/ε)d−1 for c.

4 Closest-point queries

A problem related to polytope approximation arises in an algorithm for the post-
office problem: given a set S of n points (called sites) in d dimensions, build a
data structure so that given a query point q, the closest site to q can be found
quickly. The algorithm given here is given also a relative error bound ε, and
depends on a ratio ρ, which is no more than the ratio of the distance between
the farthest pair of sites to the distance between the closest pair of sites. The al-
gorithm builds a data structure of size O(n(log ρ)/δd/2) in time O(n2(log ρ))/δd.
With this data structure, queries can be answered in O(log n)/δd/2 time, with
high probability. The answer to the query is an ε-closest site: a site whose dis-
tance to the query point is within 1+ ε of closest site’s distance. The algorithm
uses randomization for the approximation problem, and also in a fashion similar
to skip lists.[Pug90]

The approach here is based on that introduced by Arya and Mount.[AM93]
The general idea is to find, for each site s, a list of sites Ns with the following
property: if s is not the closest site to the query point q, then there is a site in
Ns closer to q than s. With this property, a simple search procedure will lead
to the closest site: pick any site s; if a site t ∈ Ns is closer to q, assign t to s
and repeat; otherwise return s as closest.

This approach is not so interesting just yet. The list Ns must be the set of
Delaunay neighbors of s, as the interested reader can easily show. This makes
for a space requirement of Ω(n2) in the worst case, for d > 2. Also, the query
time is Ω(n) in the worst case: there is no speedup over the obvious algorithm.
(For uniformly distributed points, the query time is more like O(n1/d), so this
approach is not entirely useless, however.)

For more interesting results, make the problem easier: instead of the closest
site, find the site whose distance to the query point is within 1+ε of the distance
of the closest site’s, for some given ε > 0. This is the approximate query problem
solved by Arya and Mount. (More recently Arya et al. applied quadtree-like
techniques to the problem.[AMN+94]) Arya and Mount used a collection of
narrow cones to obtain their lists, in a way similar to Yao’s use of them for
finding minimum spanning trees[Yao82]. Here the approach is to go from the
desired conditions on the lists to a polytope approximation problem.

The modified construction begins as follows. For each site s, consider a list
Ls with the following property: for any q, if there is b ∈ S with

d(q, s) > (1 + ε)d(q, b),

7

then there is b′ ∈ Ls with

d(q, s) > (1 + ε′)d(q, b′),

where ε′ ≡ ε/2. Using such lists, the search procedure is as follows: start at
any site s. If there is t ∈ Ls with d(q, s) > (1 + ε′)d(q, t), then assign t to
s and repeat. Otherwise, return s as the approximate closest. With Ls as
defined, the site returned by this procedure will be within ε-closest. Moreover,
the procedure makes progress at each step: the distance of the current site
decreases by 1/(1 + ε′) at each step.

Consider the condition satisfied by Ls in a contrapositive way. Fixing s ∈ S,
let Nε(S) be defined by

Nε(S) ≡ {q | d(q, s) ≤ (1 + ε)d(q, b) for all b ∈ S}.

This definition implies that

Nε′(Ls) = {q | d(q, s) ≤ (1 + ε′)d(q, b) for all b ∈ Ls}.

Thus the condition on Ls is equivalent to Nε′(Ls) ⊂ Nε(S). The set Nε(S) is
the Voronoi region of s in a multiplicatively weighted Voronoi diagram. The Ls

we want is a small one that such that Nε′(Ls) is inside Nε(S); the problem of
finding such an Ls can be solved by the techniques of the previous sections.

We’ll look at this problem, and then at the application of the lists Ls to get
a fast query time.

4.1 Finding Ls

The most direct approach to finding Ls via the ideas of §2 seem to require
nonconvex optimization instead of linear programming subproblems. However,
standard “lifting map” techniques yield convex programming subproblems, as
we’ll see next.

If we put s at the origin, the region Nε(S) is the intersection of all regions
of the form {z | z2 ≤ (1 + ε)2(z − b)2}, where b ∈ S. The condition here is
z2/(1 + ε)2 ≤ (z − b)2, or αz2 ≥ 2b · z − b2, where α ≡ 1 − 1/(1 + ε)2 ≈ 2ε.
Letting (z, y) denote a point in Rd+1, with z ∈ Rd and y ∈ R, we have

Nε(S) = {z | (z, y) ∈ Pε(S) and y = z2},

where
Pε(S) ≡

⋂
b∈S

Hε,b

with
Hε,b ≡ {(z, y) | αy ≥ 2b · z − b2}.

Let Ψ ≡ {(z, y) | y ≥ z2}. Then for Nε′(Ls) ⊂ Nε(S), it is enough that
Pε′(Ls) ∩Ψ ⊂ Pε(S) ∩Ψ.

8

The problem of finding Ls satisfying this condition can be solved as in §2:
apply the iterative reweighting scheme to the set of regions Hε′,b with b ∈ S;
at each step, check for each b ∈ S that Pε′(R) ∩ Ψ ⊂ Hε,b. This is a convex
programming problem, and as shown by Adler and Shamir, it is solvable in
O(n) expected time using a randomized procedure similar to one for linear
programming.[AS90] (The “base” case can be solved in polynomial time.[Vai89])
If all b ∈ S satisfy this condition, then return R as Ls. Suppose the condition
fails for some b̂ ∈ S. Then there will be some vertex of Pε′(R) ∩Ψ not in Hε,b̂.
This vertex v is the analog of an L-facet. Find halfspaces Hε′,b that do not
contain v. If the number of such halfspaces is less than Cdn/r, then double the
weights of the corresponding sites. (The constant C can be derived as for the
covering algorithms above.)

4.2 The size of Ls

This algorithm returns a set Ls of size within O(d log c) of the best possible size
c. How large can c be? In fact, c = O(1/ε)d/2 log(ρ/ε), as this subsection will
show.

We’ll apply Lemma 3.2 to bound the size of Ls. To do so, split Ψ into slabs
Ψi ≡ {(z, y) | di ≤ y ≤ di+1}, for i = 0 . . .m, where d0 ≡ (1/2) minb∈S ‖b‖,
and di = 2di−1, and m is large enough that dm > (2/α) maxb∈S ‖b‖. We have
m = log O(ρ/α). We can assume that d0 ≥ 1, by the appropriate scaling. It is
not hard to show that every halfspace Hε,b contains all points of Ψ not in some
Ψi: only the points of Ψi need be considered.

Consider a given slab Ψi, and the two halfspaces Hε,b and Hε′,b. That is, we
have the points (z, y) such that αy ≥ 2b · z − b2, and the points (z, y) such that
α′y ≥ 2b · z − b2, where α′ ≡ 1− 1/(1 + ε′)2. Since α > α′ and y ≥ di, we have

α′y ≤ αy − di(α− α′) ≤ αy,

and so H∗ contains Hε′,b ∩Ψi, where H∗ is a halfspace whose boundary hyper-
plane is a translation by di(α − α′) of the boundary of Hε,b. It is not hard to
show that Ψi is contained in a ball B′ of radius no more than di + 1. Let B
be a ball with the same center as B′ and with radius (di + 1)(1 + 2ε). Now
Pε′(S) ∩ B′ ⊂ Pε(S) ∩ B, and moreover, every point of the former is farther
than diε/2 from any point not in the latter, for ε < 1. Thus we can apply
Lemma 3.2 to find a polytope Pd with O(1/ε)d/2 facets such that Pε′(S)∩B′ ⊂
Pd ⊂ Pε(S) ∩ B. It follows that Pε′(S) ∩ B′ ⊂ Pd ∩ B′ ⊂ Pε(S) ∩ B′; just as
with polytope covering, it follows that there is a coarsening Pε′(Li

s) of Pε′(S)
with at most d + 1 times as many facets as Pd such that Pε′(Li

s) ∩B′ ⊂ Pε(S).
Since Ψi ⊂ B, we have Pε′(Li

s) ∩Ψi ⊂ Pε(S)
The list Ls is now obtained as the union of the lists Li

s, with the size bound
mentioned.

9

4.3 Solving closest-point problems

How can a fast query time be obtained using the lists Ls? Just as with Arya
and Mount’s work, a skip-list approach is helpful.[Pug90] Choose a family of
subsets of S as follows: let R0 ≡ S; to obtain Rj+1 from Rj , pick each element
of Rj to be in Rj+1 with probability 1/2. Repeat this process until an empty
Rk is obtained. If s ∈ Rj but not Rj+1, say that s has level j. Construct the
lists Ls,j for each Rj , and so s ∈ S has lists for each subset up to its level. To
answer a query, start with some s ∈ Rk−1, and find the ε-closest site tk−1 in
Rk−1 using the lists Ls,k−1. Now find an ε-closest site tk−2 in Rk−2, starting
with tk−1. Repeat until t0 is found, and return t0 as an ε-closest site in S.

The correctness of this procedure should be clear. How much time does it
take? Since each list is bounded in size by Cdc log c, where c = O(1/ε)d/2(log ρ+
log(1/ε) log ε), the query time is equal to Cdc log c times the number of sites
visited in the procedure.

It is worthwhile to compare this procedure with one that finds the closest
site in Rj at stage j, not just the ε-closest. Suppose we have tj as the ε-closest
at some stage, but indeed a site t is closest in Rj . When finding the ε-closest
in Rj+1, the approximate procedure will in two steps find a site t′ in Rj+1 such
that d(q, t′) ≤ d(q, t)/(1 + ε′)2. (Here we assume that the search in Rj+1 takes
at least two steps.) Since (1 + ε′)2 ≥ (1 + ε) for ε ≥ 0, we know that t′ is closer
to q than t. The number of sites visited at stage j +1 for the exact procedure is
proportional to the number of sites of Rj+1 closer to q than t; hence the number
of sites visited for the approximate procedure in Rj+1 is no more than 2 plus
the number for the exact procedure.

To analyze the exact search procedure, we can follow Sen’s analysis of skip
lists.[?] Look at the search procedure “backwards”: starting at the closest site
to q in Rj , visit sites in order of increasing distance, until a site also in Rj+1

is encountered. Call this a level jump. Once the level jump occurs, only sites
in Rj+1 are visited. The probability of a level jump at a given visited node
is 1/2. Thus the probability that at least k level jumps occur in v node visits
is the probability that a binomially distributed random variable has at least
k successes in v trials. The query time can be greater than V only if either
the number of level jumps exceeds K or if fewer than K level jumps occur in
V attempts; the former probability is no more than n/2K , which we’ll need
less than some probability P1. This implies K ≥ lg(n/P1). The probability of
fewer than K level jumps in V trials can be bounded using Chernoff bounds
for the binomial; letting γ ≡ 2K/V , it is exp(−V (1 − γ)2/2). The probability
that the query time exceeds 2 lg(n/P1)/γ for a given point q is therefore P1 +
exp(− lg(n/P1)(1 − γ)2/γ). With γ = 1/3, this is less than 2P1. Hence a
O(Q) log n query time is achievable with failure probability 1/nQ.

This analysis applies only to a single given point q; what about arbitrary
points? As with similar situations in randomized geometric algorithms, a good
query time holds for all points because there are ndO(1)

combinatorially distinct

10

classes of points. That is, in an exact search algorithm, two points q1 and q2

will have the same sequence of visited sites, and so the same query time, if the
distance order on the sites induced by the two points is the same. In other words,
whether we sort the sites in order of distance from q1, or sort them in order of
distance from q2, we get the same sorted order. How many classes of points are
distinct in this way? Let B be the set of

(
n
2

)
perpendicular bisector hyerplanes of

pairs of sites, and let A(B) be the subdivision of Rd induced by those bisectors.
Then all points in one cell (block) of A(B) induce the same distance orders, and

so have the same query time. The number of cells of A(B) is
((n

2)
d

)
< n2d. Thus

a query time for any point of O(log n) occurs with probability 1− 1/nΩ(1).
Queries can be made a bit faster by using splitting up the each list Ls,j

into lists Li
s,j , where the superscript corresponds to the slabs Ψi in §4.2. When

searching for a given site s at a given stage j, the list Li
s,j with i = 2 lg d(s, q)

can be used. The gives a query time independent of ρ. It is also worth re-
marking that the while ρ was described as maxb,b′,b′′∈S ‖b, b′‖/‖b, b′′‖, in fact
the relevant quantity is the analogous expression with b′ and b′′ restricted to
sites determining Pε(S).

5 Concluding remarks

Of course, the most interesting open question is whether the log c factor in the
performance ratio can be reduced, as well as the d factors. The bound 4d ln c
can be easily sharpened to 2d ln(Kc ln c), for a small constant K.

In three dimensions, the bounds reduce to O(cn1+δ); this can readily be
sharpened to cn logO(1) n.

Related ideas yield an output-sensitive algorithm for extreme points, requir-
ing O(an) time to find the a extreme points of a set of n points. This result will
be reported elsewhere.

Acknowledgements. I’m grateful to Pankaj Agarwal, Michael Goodrich,
and Subhash Suri for helpful comments. Of course, they aren’t to blame.

References

[AM93] S. Arya and D. M. Mount. Approximate nearest neighbor queries
in fixed dimensions. In Proc. 4th ACM-SIAM Sympos. Discrete
Algorithms, pages 271–280, 1993.

[AMN+94] S. Arya, D. M. Mount, N. S. Netanyuhu, R. Silverman, and An-
gela Wu. An optimal algorithm for approximate nearest neighbor
searching. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
1994.

11

[AS90] I. Adler and R. Shamir. A randomization scheme for speeding up
algorithms for linear and convex quadratic programming problems
with a high constraints-to-variables ratio. Technical Report 21-90,
Rutgers Univ., May 1990. To appear in Math. Programming.

[Cla87] K. L. Clarkson. New applications of random sampling in computa-
tional geometry. Discrete and Computational Geometry, 2:195–222,
1987.

[Cla88] K. L. Clarkson. A Las Vegas algorithm for linear programming when
the dimension is small. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 452–456, 1988. Revised version: Las Vegas
algorithms for linear and integer programming when the dimension
is small (preprint).

[Cla93] K. L. Clarkson. Algorithms for polytope covering and approxima-
tion. In Proc. 3rd Workshop on Algorithms and Data Structures,
pages 246–252, 1993.

[Cla94] K. L. Clarkson. An algorithm for approximate closest-point queries.
In Proc. Tenth Annual Symposium on Computational Geometry,
pages 160–164, 1994.

[DJ90] G. Das and D. Joseph. The complexity of minimum nested polyhe-
dra. In Canadian Conference on Computational Geometry, 1990.

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differen-
tiable boundaries. J. Approximation Theory, 10:227–236, 1974.

[HW87] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries.
Discrete and Computational Geometry, 2:127–151, 1987.

[Lit87] N. Littlestone. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. In Proc. 28th IEEE Symp. on
Foundations of Computer Science, pages 68–77, 1987.

[Mat92] J. Matoušek. Reporting points in halfspaces. Computational Geom-
etry: Theory and Applications, pages 169–186, 1992.

[MS92a] J. Matoušek and O. Schwartzkopf. Linear optimization queries. In
Proc. Eighth ACM Symp. on Comp. Geometry, pages 16–25, 1992.

[MS92b] J. Mitchell and S. Suri. Separation and approximation of polyhedral
objects. In Proc. 3rd ACM Symp. on Discrete Algorithms, pages
296–306, 1992.

[Pug90] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 35:668–676, 1990.

12

[Vai89] P. M. Vaidya. A new algorithm for minimizing convex functions over
convex sets. In Proc. 30th Annu. IEEE Sympos. Found. Comput.
Sci., pages 338–343, 1989.

[Wel88] E. Welzl. Partition trees for triangle counting and other range
searching problems. In Proc. Fourth ACM Symp. on Comp. Ge-
ometry, pages 23–33, 1988.

[Yao82] A. C. Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. SIAM J. Comput., 11:721–
736, 1982.

13

