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Abstract

We investigate models for uplink interference in wireless systems. Our

models account for the effects of outage probabilities. Such an accounting

requires a nonlinear, even nonconvex model, since increasing interference

at the receiving base station increases both mobile transmit power and

outage probability, and this results in a complex interaction. Our system

model always has at least one solution, a fixed point, and it is provably

unique under certain reasonable conditions. Our main purpose is to model

real wireless systems as accurately as possible, and so we test our models

on realistic scenarios using data from a sophisticated simulator. Our al-

gorithm for finding a fixed point works very well on such scenarios, and

is guaranteed to find the fixed point when we can prove it is unique. A

slightly simplified model reduces the main data structure for a K-sector

market to 16K
2 bytes of memory.

1 Introduction

While many factors can cause problems for a cell phone call, and many design
goals must be balanced in designing a cell phone system, the power used by
the phone (the “mobile”) is particularly important: this power is limited, and
the less it is used, the longer the mobile battery will last and the smaller it
can be. Moreover, in a spread spectrum system, the signal from each mobile
can interfere with the signal from every other mobile. This motivates the use
of sophisticated power control methods: by a variety of means, the system
determines how much power is needed by a mobile to carry its call, and the
mobile transmits using just that much power. Part of this determination is
done at the base stations interacting with the mobile. The result is a complex
dynamical system, as mobiles move, signal losses vary, and calls begin and end.

∗IBM Research; work was done at Bell Labs
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We describe here a computational model of spread-spectrum uplink power
control. The model is used within Alcatel-Lucent’s Ocelot software for wire-
less optimization, which handles for example CDMA2000 and UMTS voice and
circuit data services. With this application in mind, the model has several
properties:

• It models existing wireless systems: it is not a proposal for a new power
control system;

• It is designed to be qualitatively accurate over a wide range of conditions,
including reverse-link-limited settings;

• It can be evaluated with reasonable speed;

• It is a differentiable function of relevant parameters, and the derivatives
can be evaluated with reasonable speed;

The first property implies that we cannot, for example, simply insist of the
wireless system that no calls are dropped; such a requirement corresponds to the
inclusion of an upper bound on mobile power as a constraint in an optimization
problem [1].

We focus here mainly on voice, not data, but some parts of our modeling
apply to certain kinds of circuit data services.

Our basic setting is as follows (see for example Lee and Miller [2]). In a
given region, there are K base-station antennas (hereafter “sectors”), and a
given sector k, with 1 ≤ k ≤ K, receives total radio power xk, from mobiles
in the region and from thermal noise and external radio interference sources.
Based on the frame error rate, the sector determines a target SIR (signal-to-
interference ratio) φk such that if the signal power received from a mobile is at
least φkxk, then the error rate for the mobile will be acceptably low. For each
mobile m in soft handoff with the sector, the sector determines the received
power sm, and sends a power control bit to the mobile, whose value depends
on whether sm > φkxk, and tells the mobile to increment or decrement its
transmit power accordingly. The mobile looks at all such power control bits,
and decrements its power if any of the bits suggest it. This protocol keeps the
mobile power near the smallest possible such that some sector will receive it
with adequate SIR.

Suppose each mobile m is transmitting with power sm, and is received at
sector k with power sm/Lkm, where Lkm is the pathloss factor for the signal
traveling from m to k. Let k(m) denote the sector that is currently determining
the power transmitted by m, and Sk denotes the set of mobiles m such that
k = k(m). Then the power transmitted by m ∈ Sk is

sm := φkxkLkm, (1)

and so for each k′,

xk′ = ηk′ +
∑

k

∑

m∈Sk

Lkmφkxk/Lk′m,
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Figure 1: A typical test scenario with some of the sectors labelled with their
indices k.

where ηk′ is the power of the noise plus external interference received by sector
k′. This equation is correct only under some approximations and assumptions,
but it suggests something of the nature of the model that must be evaluated.
Put another way, the vector of total radio powers x satisfies the fixed point
condition x = η + Ax, where

Ak′k :=
∑

m∈Sk

Lkmφk

Lk′m
. (2)

Note that A is a nonnegative matrix, that is, all its entries are nonnegative. If
η = 0, then x = Ax, and x is an eigenvector of the nonnegative matrix A.

The eigenvalues and eigenvectors of nonnegative matrices are well-studied,
as the Perron-Frobenius theory, and that theory has been applied to the un-
derstanding of power control [3]. However, the presence of noise and external
interference, implying η > 0, means that such theory does not directly give the
most detailed understanding of power control.

A further complication is reverse-link outage: a call may be dropped if the
mobile cannot transmit the target power φkxkLkm as in (1); thus the power sm

is not a linear function of xk, but instead a sawtooth: at a certain xk threshold,
it goes to zero.

Another complication is noise rise limitation: a sector may block calls if the
total radio power it receives is above a pre-set threshold. Such a limitation is
discussed in Section 5.

A dynamic model of power control might maintain a collection of active
mobiles, adding some as calls arrive and dropping others either as normal call
termination, or as outages, the result of reverse-link failure. Simulation over
time would then yield outage probabilities, average values for the xk, and so
on. However, such a scheme would be too slow for our optimization application,
and also, not smooth enough. We use instead a static framework: a (large)
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discrete set of locations is fixed, each of which has an estimated probability of
being the location of a transmitting mobile. The locations and probabilities are
determined elsewhere, and are based on input by the Ocelot user, from a variety
of sources, and also on estimates of forward-link coverage probability, and other
considerations. The locations could just be points on a regular grid, but Ocelot
provides many other options.

We thereby model a dynamic set of mobiles simply as the expectation of
the mobile power generated at each location. With some abuse of notation, we
index the locations with m, and have corresponding losses Lkm, power levels
sm, and so on. Since we are modeling probabilities and expectations and not
specific mobiles, the power sm need not be a discontinuous sawtooth function of
xk, but instead can drop off smoothly, as an ensemble average. We might base
this dropoff on a log-normal probability distribution for shadow fading. Such a
model is discussed in Section 2. However, for efficiency reasons, we use spline-
based approximations to the mobile response, as discussed in Section 3. This
leads to a function F : RK → RK , which disregarding call dropping would be
F (x) = η+Ax, but instead we have F (x)k′ = ηk′ +

∑

k Ãk′k(xk), where Ãk′k(xk)
is a spline function of the sector k interference xk. This smooth replacement
for the sawtooth is not only more plausible as an estimate, but is convenient
computationally: with discontinuities, there may not be a solution to the fixed
point problem x = F (x); with the smooth version, we are able to show that
under some reasonable conditions, a fixed point solution exists. The solution of
the fixed point problem is discussed in Section 5.

We also change the model slightly, to save computational resources, by taking
advantage of the similarity between the spline functions Ãk′k and Ãk′′k for
sectors k′′ 6= k′. The idea is that the interference at sector k′ due to uplinks to
sector k is closely related to the interference at any other sector k′′ due to those
same uplinks. This refinement is discussed in Section 4.

Here is the outline for the rest of the paper: we begin in Section 2 by ex-
plaining the smoothed sawtooth functions and their relationship to log-normal
fading. Then Section 3 gives a spline-based approximation that allows contri-
butions for various locations m to be combined and manipulated efficiently, and
Section 4 presents a resource-saving refinement. Next, Section 5 presents ro-
bust algorithms for finding fixed points and gives appropriate theorems. The
Brouwer fixed point theorem guarantees that our system has a solution. Under
certain reasonable conditions that make it a contraction we can prove that the
solution is unique and our algorithm finds it. Otherwise, we can only prove that
the algorithm finds a fixed point if it gets a good enough starting point. The re-
sults in Section 6 include discussions of the various models, and tests on realistic
scenarios (not just hexagonal grids). Finally, Section 7 presents conclusions.

2 Smoothed sawtooth functions

Consider a single term from the sum (2) as changed to account for the dropping
of calls due to reverse-link limitations. If ŝ is the maximum mobile uplink
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transmit power, multiplying the term by

{

xk if sm < ŝ

0 otherwise,

where again sm := xkLkmφk for m ∈ Sk, gives the sawtooth function that we
need to smooth by considering the ensemble average of a dynamic set of mobiles
and finding the contribution to interference due to location m. The sawtooth-
based interference contribution to sector k′ from location m transmitting to
location k could thus be expressed as

ŝ

Lk′m
γmQ−(γm),

where

Q−(t) :=

{

1 if t < 1

0 otherwise,

and the ratio γm := sm/ŝ. Another way to describe this is as

ŝ

Lk′m
G(γm),

where G(γ) is the sawtooth function

G(γ) := γQ−(γ). (3)

Replace pathlosses Lkm and Lk′m by Lkm exp(Rkm) and Lk′m exp(Rk′m),
where random variables Rkm and Rk′m are N(0, σ), that is, normally dis-
tributed with zero mean and standard deviation σ. This implies replacing
γm by γm exp(Rkm) as well. Then the expected interference contribution for
location m could be estimated as

E

[

ŝ

Lk′m exp(Rk′m)
γm exp(Rkm)Q−(γm exp(Rkm))

]

=
ŝγm

Lk′m
E

[

exp(Rkm −Rk′m)Q−(γm exp(Rkm))
]

, (4)

although the non-outage condition Q−(γm exp(Rkm)) = 1 might be more gen-
erally modeled as a non-outage probability Q().

It may be that Rkm and Rk′m are partially correlated, so we assume that
there is some β ∈ [0, 1] and N(0, σ)-distributed random variable R̂k′m, indepen-
dent of Rkm, so that Rk′m = (1 − β)Rkm + βR̂k′m, and so

exp(Rkm −Rk′m) = exp(−βR̂k′m) exp(βRkm).

If we use the latter expression in (4), use the independence of Rkm and R̂k′m,
and observe that E[exp(−βR̂k′m)] = E[exp(βR̂k′m)], the expected interference
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contribution becomes

ŝγm

Lk′m
E

[

exp(Rkm −Rk′m)Q−(γm exp(Rkm))
]

=
ŝγm

Lk′m
E[−βRk′m]E

[

exp(βRkm)Q−(γm exp(Rkm))
]

. (5)

The expectation over Rkm can be written out as

E
[

exp(βRkm)Q−(γm exp(Rkm))
]

=
1√
2π

∫

∞

−∞

exp(−t2/2) exp(βtσ)Q−(γm exp(tσ)) dt.

Note that Q−(γm exp(tσ)) = 1 only when ln(γm) + tσ < 0 or equivalently,
t < − ln(γm)/σ. Furthermore,

exp(−t2/2) exp(βtσ) = exp(β2σ2/2) exp(−(t− βσ)2/2),

so that the expectation over Rkm becomes

E
[

exp(βRkm)Q−(γm exp(Rkm))
]

=
exp(β2σ2/2)√

2π

∫

− ln(γm)/σ

−∞

exp(−(t− βσ)2/2) dt

=
exp(β2σ2/2)√

2π

∫

− ln(γm)/σ−βσ

−∞

exp(−u2/2) du.

= exp(β2σ2/2)Φ[− ln(γm)/σ − βσ],

where Φ(x) is the normal cumulative distribution function at x, the probability
that a N(0, 1) random variable is less than x.

Finally, substituting the above expression into (5), and also substituting
exp(β2σ2/2) = E[exp(βR̂k′m)], gives the following expression for the expected
interference contribution

ŝ exp(β2σ2)

Lk′m
γmΦ[− ln(γm)/σ − βσ]. (6)

Note that γmΦ[− ln(γm)/σ − βσ] is essentially a smoothed version of (3).

3 Spline Approximations

The normal CDF needed for (6) is easily evaluated via the error function erf(),
since 2Φ(x) = 1+erf(x/

√
2). However, although erf() can be found in any good

mathematical subroutine library, it would be awkward to handle sums of such
interference contributions for many different locations m ∈ Sk. Viewing (6) as
a function of xk rather than γm requires a substitution

γm =
sm

ŝ
=

φkxkLkm

ŝ
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that shifts the xk values at which (6) begins to fall to zero. Even if we were
to scale them so that their initial slopes match, the functions (6) for different
locations m would be as in Figure 2a.

1 2 3 4

(a)

1 2 3 4

(b)

Figure 2: (a) smoothed sawtooth functions for various locations m where γm/xk

differs by factors of α = 1.26; (b) the corresponding spline approximations with
dashed lines at the ends of spline segments.

Spline approximations such as those shown in Figure 2b are much more
convenient when taking smoothed sawtooth functions for various locations m,
and adding them up in a manner analogous to (2). The splines are piecewise-
cubic polynomial functions chosen to have second-order continuity at the knots
where one cubic polynomial segment joins the next one. Placing the knots at
powers of a parameter α ensures that any linear combination of these spline
functions will be a piecewise cubic spline with the same knot spacing.

The smoothed sawtooth spline is conveniently represented by a Beziér control
polygon as shown in Figure 3. It consists of a straight line joining the origin
to a point (x0, a0) followed by three curved segments, followed by a horizontal
straight line beginning at (x3, a9). The value of the spline function at xi +
t(xi+1 − xi) for 0 ≤ i < 3 and 0 ≤ t ≤ 1 is

(1− t)3a3i + 3t(1− t)2a3i+1 + 3t2(1− t)a3i+2 + t3a3i+3. (7)

The second-order continuity conditions determine a0, a1, . . . , a9 via 10 linear
equations in 10 unknowns:

ai = 1 + (α− 1)i/3 for i < 3

α(ai − ai−1) = ai+1 − ai for i = 3, 6

α2(ai − 2ai−1 + ai−2) = ai − 2ai+1 − ai+2for i = 3, 6

ai = 0 for i > 6 (8)

For any fixed α, (7) and (8) determine a function of x that we shall call
Gα(x). It has been normalized to have initial slope 1 because it is now incon-
venient to include factors from (6) such as γmŝ/Lk′m.
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a0
a1
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a5
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x0 x1 x2 x3

Figure 3: The Beziér control polygon for the curved part of a smoothed sawtooth
spline.

The complete set of normalized smoothed sawtooth splines is

{

Gα(bαix)

bαi

∣

∣

∣

∣

i ∈ Z

}

,

where b is a bias parameter to be chosen along with α. We must choose α and
b so that

Gα(bγ)

b
≈ γΦ[− ln(γ)/σ − βσ] (9)

as functions of γ.
It is enough to consider β = 0, since the effect of β can be accounted for

by scaling b: if (9) holds with β = 0 and at γ′ := γ exp(βσ2), then for b′ :=
b exp(βσ2),

Gα(b′γ)

b′
= exp(−βσ2)

Gα(bγ′)

b

≈ exp(−βσ2)γ′Φ[− ln(γ′)/σ]

= γΦ[− ln(γ)/σ − β/σ].

We can quantify the difference between the two functions by evaluating each
side of (9) at

γm = σ−3.00, σ−2.97, σ−2.94, . . . , σ3.00

and taking the RMS mean of the differences. For any given σ, it is easy to choose
α and b so as to minimize this. For example, exhaustively trying multiples for
0.0001 for α and b gives the results in Table 1. If it is more convenient to have
an empirical formula based on this table, choose

L = 2.043σ + .5625σ2

and then let
α = eL

and

b =
(0.1127 + 0.3355α + 0.451α2 + 0.00041α3) exp(βσ2)

1 + 0.0042α
.
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Table 1: Choosing α and b so as to satisfy (9)
σ lnα b RMS error

0.09212 0.1799 1.14574 0.00379052
0.2303 0.457 1.76343 0.00498369
0.4606 0.9679 4.09981 0.00748236
0.6909 1.5904 12.3288 0.00915151
0.9212 2.3385 50.1016 0.0108936
1.1515 3.1548 239.085 0.0173641
1.3818 3.9875 1140.56 0.030776
1.6121 4.8184 5061.15 0.0540373
1.8424 5.668 21703.5 0.0943915
2.0727 6.6114 141023 0.165292

Note that we have included the exp(βσ2) that accounts for β 6= 0.
These smoothed sawtooth splines need to be added up for all locations m

served by sector k so as to obtain a function Āk′k for interference at sector k′ due
to mobiles owned by sector k as a function of xk, the interference at sector k.
In other words, we need a spline-based generalization of (2). For each m, we
must choose a smoothed sawtooth spline

Gα(bαimxk)

bαim

so that αimxk ≈ γm, or perhaps use

(1− ξm)Gα,im,b(xk) + ξmGα,im+1,b(xk)

where ((1− ξm)αim + ξmαim+1)xk = γm. Then multiply by the

ŝ exp(β2σ2)

Lk′m

factor of (6).

Āk′k(xk) =
∑

m∈Sk

ŝ exp(β2σ2)

Lk′m

[

(1− ξm)fracGα(bαimxk)bαim(xk) + ξmfracGα(bαim+1xk)bαim

]

.

4 Using Similarity to Save Resources

Since the path loss Lkm can vary by more than a factor of 1000 as the location m
ranges over Sk, the Āk′k function will typically have dozens of spline segments.
This seems like a lot of information to store and manipulate for each pair of
sectors k′k, especially since Āk′k functions for a common k but differing k′ tend
to be related, as shown in Figure 4.
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Figure 4: (a) Āk′k functions for k = 11 and various k′; (b) the correspond-
ing functions based on raw unsmoothed sawteeth. The test data are from the
scenario shown in Figure 1.

Since the knots are all aligned, it is easy to add up the the spline functions
Āk′k to obtain a master spline function

Ak(x) =

∑

k′ Āk′k(x)
∑

k′ Ā′

k′k(0)

that can be thought of as an average Āk′k, normalized to have unit initial slope.
The resource-saving idea is to store K master spline functions and K2 simple

transformations instead of K2 spline functions. If the simple transform is just
to scale Āk to have the right initial slope, the result is as shown in Figure 5a.
Since the dashed lines for the scaled versions of Āk are sometimes far from the
corresponding solid curves Āk′k, the transformation that just scales by A′

k′k(0)
appears to be too simple.

The more promising transformation illustrated in Figure 5b is to use

τk′kx

(

Āk(x)

x

)τ̄
k′k

(10)

in place of Āk′k(x), where τk′k and τ̄k′k are chosen based on Ā′

k′k(0) and Āk′k(x̄)
for some fixed x̄ that can be thought of as an a priori guess at a typical inter-
ference level. This way, there are just two values to keep track of for each k′k
pair while we consider various locations m. After finding these 2K2 values and
the K master spline functions Āk, we can set

τk′k = Ā′

k′k(0) and τ̄k′k =
log(Āk′k(x̄)/(τk′kx̄))

log(Āk(x̄)/x̄)

for each pair k′k. (In practice, one must impose also a positive lower bound on
τ̄k′k to avoid 00 in (10).)
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Figure 5: (a) Āk′k functions for k = 11 (solid) versus transforming Āk to match
initial slope (dashed); (b) same except dashed lines are Āk transformed to match
initial slope, and value at 0.3nW.

5 Finding a Fixed Point

The last three sections have described different versions of a function that gives
the (expected) interference received at sector k′ from mobiles whose primary
sector is k. These are:

1. A linear function equal to zero at zero;

2. A sum of sawtooth functions;

3. A sum of smoothed sawteeth, based on lognormal shadow fading, as dis-
cussed in Section 2;

4. A sum of spline functions, that can be viewed as approximations to the
smoothed sawteeth, as in § 3;

5. For sector k′, a function that is a transformed version, of a “master” spline
function Āk for sector k, as in § 4.

In whatever way each such function Ak′k(xk) is defined, the result is an estimate
ηk′ +

∑

k Ak′k(xk) of the interference received at sector k′. This could also be
written as a vector η+ F̄ (xk)1, where F̄ (xk) is a K×K matrix with F̄ (xk)k′k =
Ak′k(xk), and 1 is the K-vector of all ones. Defining the function F : RK →RK

by F (x) = η+F̄ (x)1, the interference vector thus obeys the condition x = F (x).
In other words, it is a fixed point of the mapping F .

When the sector-to-sector interference function is linear, as listed first above,
the F̄ function returns a real matrix, and the fixed point problem is to solve
a linear system x = η + Ax. For the second model listed, a sum of sawteeth,
the corresponding fixed-point problem may be unsolvable due to discontinu-
ities. The smoothed version given third is not computationally convenient, as
discussed. It remains to consider finding fixed points for the last two versions,
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with spline-based functions, and with the more compact spline-based scheme of
Section 4.

Before discussing methods of solution of such general fixed point problems,
we consider the implementation of a model of noise-rise limits for power control.
Here sector k tries to keep xk ≤ ρ̂ηk, for some ρ̂ > 1, by blocking calls if neces-
sary. The simplest way to model this is just to compose F with a function that
limits the kth component to at most ρ̂ηk(perhaps with some kind of smoothing
to account for xk being an expectation and the sector not being able to measure
xk or ηk precisely).

A more sophisticated model of noise rise limitation accounts for sector k’s
decision to drop calls also reducing its contributions to xk′ for all k′ 6= k: replace
1 in η + F̄ (x)1 with a vector whose kth component is a probability that sector
k decides not to block a call due to noise rise concerns. In other words,

F (x) = η + F̄ (x)h(x), where h(x)k =

{

1 if xk ≪ ρ̂ηk;

0 if xk ≫ ρ̂ηk.

By any of these definitions, F is a smooth function that maps the positive
orthant into a rectilinear region

U = {x ∈ RK | ηk ≤ xk ≤ µk},

where the upper bound µk can come from the noise rise limitation or from
the fact that each component of F̄ is a univariate function that has a finite
maximum on [0,∞) because it is a sum of Gα functions that have this property
(see Figure 2), and the transformation (10) preserves this. In other words, we
have just defined a point µ such that η and µ are opposite corners of a box U .

Since U is homeomorphic to a closed ball and the continuous function F
maps the whole positive orthant (a superset of U) into U , the Brouwer fixed
point theorem guarantees that there is at least one fixed point x = F (x). (Note
that the theorem does not require F to be bijective or surjective.)

It would also be desirable to guarantee a unique fixed point and provide an
algorithm that finds it efficiently. A popular approach used by Yates [4] and
others is to let the algorithm be Picard iteration, where repeatedly x ← F (x),
and also to give conditions under which Picard iteration provably converges to
a unique fixed point. For example, if we can exhibit a real number κ < 1 and a
vector norm ‖·‖

∗
under which

‖F (x) − F (y)‖
∗
≤ κ ‖x− y‖

∗
for all x, y ∈ U , (11)

then the fixed point is unique and Picard iteration converges from any starting
point in U . Nuzman [5] has shown that this type of argument can be applied to
non-monotonic functions that resemble F , but the spline functions on which F
is based provide too much freedom to allow for much hope of a general theorem
of this type.

In order to have an algorithm that is as reliable as possible, we certainly need
guaranteed convergence if (11) holds. We can do this by producing a sequence
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of iterates x(1), x(2), x(3), . . ., where each

∥

∥x(i+1) − F (x(i+1))
∥

∥ ≤ κ
∥

∥x(i) − F (x(i))
∥

∥ (12)

for the standard Euclidean norm. Such a sequence clearly converges to a fixed
point, and Picard iteration under (11) provides one way to achieve it if we
assume that ‖·‖

∗
is sufficiently similar to the Euclidean norm. The idea is that

a few iterations, each of which reduces ‖x− F (x)‖
∗

by the factor κ should suffice
to reduce ‖x− F (x)‖ by that factor.

Another way to find a fixed point is to use Newton iteration to look for a zero
of F (x) − x. Such an iteration does not require (11) and is known to converge
quadratically if the initial x is sufficiently close to a solution of F (x) − x = 0,
except there is no good way to know a priori what is “sufficiently close.” This
suggests a hybrid algorithm that uses an intelligent starting point, does Newton
iterations, but switches to Picard iterations if necessary to obey (12).

1. Use binary search to find a point x on the line between η and µ where
the number of negative components in x − F (x) is between 1

3K − 1
2 and

2
3K + 1

2 .

2. Compute a Newton step ∆x = (JF (x) − I)−1(F (x) − x) and find the
maximum λ̄ such that x− λ̄∆x ∈ U . Here JF (x) is the Jacobian of F .

3. Let y = x, e0 = ‖x− F (x)‖ and exit if e0 is tiny. Then if λ̄ < 0.8, do
Picard iterations and go to Step 2 as soon as ‖x− F (x)‖ ≤ κe0.

4. Let λ̂ = max(λ̄, 1 + 10−6) and λ = min(1, λ̄). While ‖x− F (x)‖ > e0 for

x = y − λ∆x, iterate λ← max(λ/2, 2λ− λ̂).

5. If ‖x− F (x)‖ > κe0, do Picard iterations until ‖x− F (x)‖ ≤ κe0. Then
go to Step 2

For each i, the ith iteration of Steps 2–5 advances from x(i) to x(i+1) while
trying to ensure that the condition of (12) is satisfied. The testing of λ values
less than one, if one Newton step is not feasible or does not help, is a line search
along the Newton step direction. The use of λ̂ in this line search causes it to
back off slowly at first if 1 Newton step goes close to the edge of U , something
that often turned out to be beneficial in practice

If a Newton step is significantly out of bounds or makes so little progress
that e0 ≥ ‖x− F (x)‖ > κe0, the algorithm resorts to Picard iterations. An
excessive number of such iterations in Steps 3 or 5 should be treated as a failure
indication.

Of course, the application of (JF (x) − I)−1 is based on LU or LUP factor-
ization and back-substitution, instead of a matrix inversion. Furthermore, the
Jacobian JF (x) often does not change much from one iteration to the next, so
it may be possible to avoid an Ω(K3) step here by using the factorization for a
previous step in an iterative improvement scheme.
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6 Results

A version of the algorithm has been tested extensively as part of Alcatel-
Lucent’s Ocelot software, but it is not practical to rerun it on more than a
few test scenarios as shown in Table 2. We will not consider defining the func-

Table 2: The test scenarios

Label K Explanation
H57 57 Hex pattern with 3 sectors per base station
M39 39 Metro area with population ≈ 500 thousand
M39h 39 M39 with 14 times the traffic near Sector 7
M60 60 Metro area with population ≈ 700 thousand
M115 115 Metro area with population ≈ 2 million

tion F : RK → RK based on unsmoothed sawtooth functions, because fixed
point iteration did not converge for any of the scenarios in Table 2. (It con-
tinually jumps back and forth across a particular discontinuity.) This leaves
F (x) = η + Ax, and also the spline based functions, with and without resource-
saving transformations, which we shall refer to as F §4 and F §3. Except as
stated below, these F functions do not include the noise rise limitation.

Table 3: Sample results with all powers given in picowatts. For two scenarios,
the solution to x = η +Ax was not usable because it had some negative entries.
The notation “5+1P” means that 1 Newton step had to be replaced by a Picard
iteration.

ηk average xk max xk Newton steps
∀k η + Ax F §3 F §4 η + Ax F §3 F §4 F §3 F §4

H57 17.3 19.8 19.4 19.4 20.2 19.7 19.7 4 4
M39 17.3 35.5 23.7 23.5 99.6 31.0 30.6 4 4
M39h 17.3 — 25.1 25.1 — 141 131 5 + 1P 5 + 1P
M60 17.3 23.1 21.6 21.6 60.4 35.6 36.1 4 4
M115 17.3 — 21.3 21.2 — 35.2 33.9 5 6

Table 3 summarizes the results for the three versions of F and the four
scenarios. As the table suggests, it is usually easy to solve for x = F (x) under
typical scenarios, and very few Newton iterations are needed to achieve full
accuracy in 64-bit floating point. The only case where a Newton step failed and
Picard iteration was needed was the contrived scenario M37h.

Note that the Brouwer fixed point theorem does not apply to x = η + Ax
since there is no vector of upper bounds µ in that case. Of course, singularity
of the A− I matrix is not a problem in practice, but there was one case where
this simple linear system failed to give a reasonable solution. This can happen
if entries of A are large enough to allow ‖Ax‖ > ‖x‖ for some vectors x.
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As can be seen from Table 4, the simple η +Ax function gives different (and
presumably less accurate) results even when it does yield a reasonable solution.
Contrast this with the resource-saving transformations of Section 4 which never
had a significant effect on the solution.

Table 4: Relative differences (‖x− y‖ /(‖x‖ + ‖y‖) between solution vectors x
and y for each pair of different F definitions.

Ax + η vs. Ax + η vs. F §3 vs.
F §3 F §4 F §4

H57 0.012 0.012 0.0019
M39 0.29 0.29 0.013
M39h — — 0.029
M60 0.090 0.090 0.0036
M115 — — 0.0065

Only the M39h scenario (a portion of which was shown in Figure 1) had
any xk values large enough to trigger reasonable noise rise limits. As Table 5
suggests, qualitatively similar result were obtained from the simple composition
of F with a function that smoothly limits each component to ρ̂ηk and from the
more complicated scheme F (x) = η + F̄ (x)h(x).

Table 5: Selected xk values from the F §4 fixed point for the M39h scenario with
various noise rise limitations. All powers are in picowatts and all ηk values were
17.3pW.

None Simple via F̄ (x)h(x)
ρ̄ = 4.5 ρ̄ = 4

7 130.63 65.83 67.16
8 31.60 28.11 26.85
11 21.56 21.29 21.42
12 29.49 26.69 25.55
17 21.29 20.99 21.05

A relatively large amount of smoothing was used so that 1 > h(xk) > 0 for
0.8ρ̂ηk < xk < 1.2ρ̂ηk < xk and consequently ρ̂ had to be reduced slightly in
order to make x7 roughly agree with the result of simple componentwise noise
rise limitation. The smoothing is needed since it is difficult to find the fixed
point if h(xk) changes very suddenly. For instance, with 0.96 . . . 1.04 instead of
0.8 . . .1.2, a failed Newton step leads to a Picard iteration that also fails. We
also tried a more cautious x ← (x + F (x))/2 iteration, but it also fails. As
can be seen from Figure 6, the iterates oscillate in 3-cycle instead. A smoother
h(xk) function avoids this, but it may be safer to use the simpler componentwise
noise rise limitation instead. Extensive experience with it has not shown any
convergence difficulties.
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Figure 6: Convergence behavior for the heavily-loaded sector in the M39h sce-
nario. Dashed lines show relationships between the results of every 3rd iteration.

7 Conclusions

We have given realistic models for uplink power control for voice and circuit
data services under a variety of technologies. The use of averages and fading
probabilities smooths out discontinuities that could otherwise prevent the model
from having a solution. Although incorporating outage probability leads to a
nonlinear system for which we cannot guarantee convergence, we have ensured
that F and its Jacobian are easy to evaluate, and the hybrid algorithm for
finding the fixed point has proved to be very reliable in practice.

Without the outage probabilities, one gets a simple η + Ax function that
often leads to significantly different solution vectors x and sometimes fails to
give any reasonable solution. With outage probabilities, we get the F functions
from Sections 3 and 4 for which the Brouwer fixed point theorem guarantees
the existence of a reasonable solution that satisfies x = F (x).

The F function from Section 4 requires K univariate spline functions and
2K2 transformation parameters (8 bits each in 64-bit floating point). Further-
more, constructing F only requires updating two quantities for each location m
and potentially interfered-with sector k′. Thus we have an F function that is
efficient in terms of both space and run time, the resulting solutions to x = F (x)
closely match those for the F from Section 3 which is based on a spline approx-
imation to the smoothed sawtooth from Section 2. In other words, we have an
efficient version of F that is well motivated by time-average models of log-normal
random variations.

As with our other modeling work motivated by practical optimization of
wireless systems [6, 7, 8], we have seen that useful predictions can be made by
efficient computational models that do not resort to simulation.
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