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Abstract

This paper gives several new demonstrations of the usefulness of random sampling
techniques in computational geometry. One new algorithm creates a search structure
for arrangements of hyperplanes by sampling the hyperplanes and using information
from the resulting arrangement to divide and conquer. This algorithm requires O(sd+ǫ)
expected preprocessing time to build a search structure for an arrangement of s hy-
perplanes in d dimensions. The expectation, as with all expected times reported here,
is with respect to the random behavior of the algorithm, and holds for any input.
Given the data structure, and a query point p, the cell of the arrangement containing
p can be found in O(log s) worst-case time. (The bound holds for any fixed ǫ > 0,
with the constant factors dependent on d and ǫ.) Using point-plane duality, the al-
gorithm may be used for answering halfspace range queries. Another algorithm finds
random samples of simplices to determine the separation distance of two polytopes.
The algorithm uses expected O(n⌊d/2⌋) time, where n is the total number of vertices
of the two polytopes. This matches previous results [11] for the case d = 3 and ex-
tends them. Another algorithm samples points in the plane to determine their order
k Voronoi diagram, and requires expected O(s1+ǫk) time for s points. (It is assumed
that no four of the points are cocircular.) This sharpens the bound O(sk2 log s) for
Lee’s algorithm [21], and O(s2 log s + k(s − k) log2 s) for Chazelle and Edelsbrunner’s
algorithm [4]. Finally, random sampling is used to show that any set of s points in E3

has O(sk2 log8 s/(log log s)6) distinct j-sets with j ≤ k. (For S ⊂ Ed, a set S′ ⊂ S
with |S′| = j is a j-set of S if there is a halfspace h+ with S′ = S∩h+.) This sharpens
with respect to k the previous bound O(sk5) [5]. The proof of the bound given here is
an instance of a “probabilistic method” [16].

0A preliminary version of this paper appeared in the Proceedings of the 18th Annual ACM Symposium

on Theory of Computing, 1986.
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1 Introduction

1.1 The problems and results

The use of random sampling to divide and conquer is quite old: the partitioning step of
quicksort may be viewed as an example [19]. This paper describes several new applications
of this technique.

Searching arrangements. Given a set of hyperplanes S with |S| = s, their arrangement AS

is the division of space into polyhedral regions that is implied by S. Such polyhedral regions
are termed cells. All of the points in a cell P are on the same side of each hyperplane in
S. That is, for every h ∈ S, no two points in P are on opposite sides of h. Using point-
hyperplane duality, an algorithm for determining the cell containing a given query point
immediately yields an algorithm for halfspace range queries. The O(log s) query time of the
algorithm given here is much faster that of several algorithms previously known [29, 30, 7].
However, these algorithms require O(s) storage, while the new algorithm requires worst-case
O(sd+ǫ) storage, for any fixed ǫ > 0. On the other hand, its preprocessing time and storage
compare quite well with those of previous algorithms for range queries having query times

that are O(log s) [10, 9]. These algorithms require Ω(s2d−1

) storage. The result for three
dimensions compares favorably with that in [3], where an O(log2 s) query time is obtained
with O(s3) storage.

Sharper bounds for k-sets. A k-set of a set of sites (points) S in d dimensions is a subset of
S of size k that is all on one side of some hyperplane, while the other sites are all on the
other side of the hyperplane. Let fk(S) denote the number of k-sets of S. A combinatorial
question relevant to several algorithms [5, 6, 14] concerns the quantity

fk,d(s) = max
S⊂Ed

|S|=s

fk(S).

Some bounds are known for fk,2(s) [14][15]. However, the only previously known bounds
for fk,3(s) concern the related quantity

gk,3(s) = max
S⊂E3

|S|=s

∑

0≤j≤k

fj(S).

Cole and others [8] showed that gk,3(s) = O(s2k), and Chazelle and Preparata [5] showed
that gk,3(s) = O(sk5). The new bound gk,3(s) = O(sk2 log8 s/(log log s)6) is less than the
[8] bound for all but very large k, and much less dependent on k than the [5] bound.

The proof of the new bound involves a subset R ⊂ S with certain properties, and a family
SR of sets of sites that is derived from R. It is shown that R can be chosen so that for
every j ≤ k, every j-set of S is a j-set of a member of SR. The number of subsets of S in
SR is of the same order as the number of j∗-sets of R, where j∗ is polylog in |R|. The size
of R is about s/k, so the size of SR is O(s/k)o(sǫ) using the [5] bound. Each subset in SR
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has about k members, and the easy bound on the number of j-sets of k sites is O(k3), so a
bound of O(sk2)o(sǫ) follows.

The existence of R ⊂ S with the properties needed for the new bound is shown by demon-
strating that with nonzero probability, a random sample of S has those properties. This
proof technique is an instance of the “probabilistic” method [16].

Constructing order k Voronoi diagrams. The techniques that yield a tighter k-set bound
also give a faster algorithm for determining all of the k-sets of a set of sites. This in turn
gives a faster algorithm for constructing order k Voronoi diagrams, due to the well-known
relationship between k-sets in 3 dimensions and order k Voronoi diagrams in 2 dimensions.
An order k Voronoi diagram is a partition of the plane so that all points in a partition block
have the same set of k nearest neighbors among the sites. Lee [21] showed that the order
k Voronoi diagram on s sites has O(k(s − k)) regions, and he gave an algorithm requiring
O(sk2 log s) time for the construction of such diagrams. His algorithm builds the ordinary
first order Voronoi diagram, and then uses that to build the second order diagram, and so on.
Chazelle and Edelsbrunner [4] have given an algorithm requiring O(s2 log s + k(s− k) log2 s)
time, which is faster than Lee’s algorithm when k is large. These algorithms and the use
of random sampling result in an algorithm requiring O(s1+ǫk) expected time for any fixed
ǫ > 0.

Determining the separation of polytopes. The separation of two polytopes is the minimum
distance from a point of one to a point of the other. Points realizing this distance need not
be vertices. With the use of random sampling, an algorithm is obtained for determining
the separation of two polytopes A and B in O(| vert A|⌊d/2⌋ + | vert B|⌊d/2⌋) expected time.
This running time matches previous deterministic results for d = 2 [26] and d = 3 [11], and
apparently no comparable previous results are known for higher dimensions.

1.2 The ideas

The main idea behind these algorithms is the simple one that a random sample may give
useful approximate information about the sampled set. For example, consider the halfspace
range counting problem: given a set of sites S and an oriented plane h, find the number of
sites in the positive half space h+. Random sampling provides a simple approximate solution
to this problem: Given h, take a random sample R ⊂ S. Then the proportion of sites of R
in h+ should be a good estimator for the proportion of sites of S in h+. The accuracy of
this estimator grows rapidly with |R|, independently of |S|, and the cost of obtaining R is
also basically independent of |S| [28].

This technique extends even to the case where a large set of planes is given, and it is desired
to use only one random sample. For each plane hi, the proportion of R in h+

i provides a
good estimator for the proportion of S in h+

i . Even though these estimators are dependent
random variables, it is still easy to show that the probability is rather small that any one of
them will be very inaccurate. This is the gist of the lemmas of §4, and this idea is the basis
of every algorithm in this paper.
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However, suppose h is given after R has been chosen. How accurate an estimator must the
proportion of R in h+ be? In other words, an infinite number of planes are given to test
the accuracy of the random sample estimator, and an adversary is allowed to choose the
worst one, the plane h for which |R ∩ h+|/|R| is the worst estimator for |S ∩ h+|/|S|. How
bad may be the worst estimator that is chosen? In this case, geometrical properties can be
brought to bear. The main lemma of §3 shows that if h divides R into two sets R′ ⊂ R ∩ h+

and R′′ = R \R′, then h+ is contained in the union of d halfspaces associated with the
convex hull of R′′. Further, h+ contains the intersection of d halfspaces associated with the
convex hull of R′. Thus if R provides a good estimator for a finite number of certain regions
associated with the convex hulls of its partitions, then R is a reasonably good estimator
for all halfspaces. This geometrical reduction, from an estimator for an arbitrary plane to
one for a finite number of fixed planes, is used in the k-set bound and Voronoi diagram
algorithm, and in the algorithm for determining polytope separation.

1.3 Related work

Reischuk [24] has used a probabilistic result that is a one-dimensional analog of Lemma 4.2,
or of Lemma 7.1 of [6]. With that result, he obtained a probabilistic parallel sorting algo-
rithm. Vapnik and Chervonenkis [27] have derived general conditions under which several
probabilities may be uniformly estimated using one random sample. (For example, the
halfspace range counting problem of the last section falls within their framework.) Their
work has inspired the recent results of Blumer and others [1] on learnability, and the recent
probabilistic algorithms of Haussler and Welzl [18] for halfspace and simplex range queries.
The complexity analysis of the latter algorithms may be readily performed using the results
of this paper.

1.4 Contents of the paper

Notation and related matters are discussed in §2. Some crucial lemmas related to geometrical
properties and probabilities are discussed in §3 and §4. The new k-set bound is given in §5,
and the proof machinery for that bound is used for the order k Voronoi diagram procedure
of §6. A procedure for building a search structure for arrangements is given in §7, polytope
separation is discussed in §8, and some concluding remarks are given in §9. Sections 7 and
8 do not depend on sections 5 and 6.

2 Notation, Terminology, and Background

In general the geometric notation used here follows [6], which in general follows [17]. The
following terminology will also be useful, and is collected in this section for reference. Some
other terminology used throughout the paper is also introduced in §3 and §4.

4



Ed denotes d-dimensional Euclidean space;

A + B is the pointwise sum {x + y | x ∈ A, y ∈ B}, for A, B ⊂ Ed;

x + A and A + x denote {x}+ A, for x ∈ Ed;

αA denotes the product {αx | x ∈ A}, for α ∈ R, A ⊂ Ed;

A flat F ⊂ Ed is an affinely closed set: for x, y ∈ F , the straight line through x and y is
contained in F .

aff A denotes the affine closure of a point set A ⊂ Ed: the intersection of all flats containing
A;

dim A denotes the affine dimension of A: the dimension of the linear subspace (aff A)− p,
for p ∈ A. A k-flat F has k = dim F ;

conv A denotes the convex closure of A;

relintA is the interior of A relative to aff A, that is, considered as a subset of aff A;

relbd A is the boundary of A relative to its affine closure.

Hyperplanes and Halfspaces. Let ha,q denote the oriented hyperplane that has normal vec-
tor a and that passes through point q. Let h+ denote the open positive halfspace bounded
by the oriented hyperplane h, so that

h+
a,q = {x | (x − q) · a > 0}.

Let h
+

denote the closed positive halfspace bounded by h. Often in this work, the orientation
of a hyperplane will be implied by context. Also, if a is a ray from the origin and ua is a
point in a, a hyperplane hua,q with be denoted by simply ha,q.

Complexes. A complex is a collection of polyhedral sets such that every face of a polyhedral
set in the complex is also in the complex, and the intersection of two polyhedral sets in the
complex is a face of each of them. (In the complexes considered here the empty set is a face.)
A polyhedral set of dimension k in a complex is a k-face of that complex. For example, the
boundary complex B(P ) of a polyhedral set P is the set of facets of P , together with their
faces. Another example is the arrangement AS associated with a set of hyperplanes S.

Triangulations. A triangulation of a complex C is another complex that is a refinement of
C into simple components. A particular kind of triangulation of C, denoted ∆(C), is used
in this paper. The triangulation of a complex C is a collection of simplices whose vertices
are also vertices of C. The union of the simplices in a triangulation is the union of the
polyhedral sets in the complex.

This definition of a triangulation must be modified somewhat if C is unbounded. An un-
bounded polyhedral set may be viewed as the convex hull of a set of points consisting of its
vertices together with points at infinity corresponding to the “endpoints” of its unbounded
edges. That is, the notion of a polytope as the convex hull of a finite number of points may
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be extended to include unbounded polyhedral sets as well. This allows, for example, “sim-
plices” that are simple cones. By extending the notion of simplex in this way, the notion of
a triangulation is also extended.

The triangulation ∆(P ) of a polyhedral set P is constructed by triangulating all of its 2-
faces, then 3-faces, and so on, using the triangulations of the facets of a face to triangulate
that face. Indeed, if the boundary complex B(F ) of a face F has been triangulated to give a
complex ∆(B(F )), then the complex corresponding to {conv(v ∪ T ) | T ∈ ∆(B(F ))} gives a
triangulation of F , where v is some vertex of F . (It may be that F has no vertices. However,
by [17, 2.5.6, 2.4.6], any polyhedral set P has a representation P = L⊥ + (L ∩ P ), where L
is a linear subspace, L⊥ is its orthogonal complement, and L ∩ P is a polyhedral set all of
whose faces have at least one vertex. We may then triangulate L ∩ P instead of P .)

A more detailed discussion of this triangulation procedure is given in [6], with a more
rigorous discussion of the triangulation of polyhedral sets that are unbounded.

Cones. Recall that a polyhedral cone is said to be pointed if it has a vertex. If a cone A
is pointed, its vertex is a unique apex point, and is denoted ap A. The set of extreme rays

of A, denoted by extr A, is the set of rays from the origin that are parallel to unbounded
edges of A.

3 Geometric Lemmas

The main lemma of this section, Lemma 3.4, provides the basis for the new results on k-sets,
order k Voronoi diagrams, and polytope separation that are given in this paper.

For a simple example of this lemma, see Figure 1. The site q is the closest point in polygon
P to line h. The halfspace h+ does not contain P . The lemma states that under these
conditions, the normal vector c to h is contained in the cone A between rays r2 and r3.
Also, h+ ⊂ A∪, where A∪ is the region spanned by sweeping clockwise from r4 and r1.
That is, A∪ is the union of two halfplanes defined by lines normal to r2 and r3.

These assertions will next be put in a more formal setting.

For a pointed polyhedral cone C with a = ap C, let

C∪ =
⋃

c∈C,c 6=a

h+
c−a,a,

and let
C∩ =

⋂

c∈C,c 6=a

h+
c−a,a.

Let C∪ and C∩ denote the corresponding closed versions of these regions.

The regions C∪ and C∩ have a simple representation in terms of a finite number of halfspaces:
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Figure 1: A line h and polygon P .

Lemma 3.1. For a pointed polyhedral cone C with a = ap C,

C∪ =
⋃

b∈extr C

h+
b,a,

and
C∩ =

⋂

b∈extr C

h+
b,a.

Proof. Omitted.

For a d-polytope P ⊂ Ed (i.e., with d = dim P ), let the outer cones of P , or ocone P , be
the collection of cones {Cq | q ∈ vert P}, where

Cq = {x ∈ Ed | (x− q) · (y − q) ≤ 0 for all y ∈ P}.

Cq may also be characterized as q + cc Vq, where Vq is the (unbounded) Voronoi region of q
with respect to vert P , and cc Vq is the characteristic cone of Vq. Cq contains those “points
at infinity” for which q is the nearest point in P . It is not hard to show that when P ⊂ Ed

is a d-polytope, the cones in ocone P are pointed. Note that ap Cq = q.

Lemma 3.2. For any d-polytope P ⊂ Ed,

⋃

C∈oconeP

(C − ap C) = Ed.

Proof. Obvious.

Lemma 3.3. For a d-polytope P ⊂ Ed and C ∈ ocone P , if b ∈ extr C and q = ap C, then
hb,q = aff F , for some facet F of P that contains q.
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Proof. Omitted.

The lemma is a special case of the fact that C is dual to coneq P , the set of rays starting
at q that pass through points of P . The lemma can be readily proven using an argument
analogous to the proof of [17, 3.4.4]. See also Lemma 5.1, below.

The above lemmas may be combined in the main lemma of this section, which shows that
any halfspace not intersecting a polytope P is contained in the union of a small number of
halfspaces, each halfspace associated with a facet of P .

Lemma 3.4. If P ⊂ Ed is a d-polytope and h is an oriented hyperplane with h+ ∩P = {},
then for some C ∈ ∆(ocone P ), h+ ⊂ C∪ =

⋃

b∈extrC h+
b,ap C . Each such hb,ap C = aff F , for

some facet F of P that contains ap C.

Proof. If h+ ∩ P = {}, there is another hyperplane h∗ with the same normal vector but
with h+ ⊂ h+

∗ and h∗ ∩ P = q for some q ∈ vert P . By Lemma 3.2, the normal to h and h∗

is contained in some C− q with C ∈ ocone P , hence in some C′− q for C′ ∈ ∆(ocone P ). By
definition, h+

∗ ⊂ C′
∪. The remaining assertions are restatements of the previous lemmas.

4 Probabilistic Lemmas

This section gives a theorem stating that in certain situations, a random sample can be
used as an estimator for certain populations that are determined by the sample itself. This
seemingly specious result follows from the fact that for a fixed subset R′ of a random sample
R, the other samples R \ R′ are chosen independently of R′. For example, the remaining
r − 3 samples are chosen independently of the first 3 samples chosen.

After an aside on random sampling, a simple example of the theorem is given. The theorem
is then stated and proven in generality sufficient for the purposes of this paper. Some
corollaries follow.

A note re sampling: In this paper we will frequently consider r random draws from a set
of size s, with s ≫ r. The r random samples are chosen with replacement, but it will
be assumed that |R|, the number of distinct sample elements chosen, is equal to r. Since
s≫ r, this condition will be true with high probability. In other words, R is a multiset with
r elements and probably r distinct elements. Furthermore, generally only an upper bound
on |R| is needed. Thus this assumption of r = |R| will not affect the results obtained, and
the fact that R is a multiset and not a set will be ignored hereafter.

As a simple example of Theorem 4.1 below, consider a set S of s points on a line. Suppose a
random sample R ⊂ S of size r is taken. What is the probability that the intervals between
consecutive points of R contain few points of S? For such an interval I, the fact that r − 2
random samples did not come from I would seem to give some evidence that I contains few
points of S. Indeed, if I is a fixed interval with |I ∩ S| ≥ αs, the probability that r − 2
random draws do not pick a point in I ∩ S is no more than (1 − α)r−2. If we consider N
fixed intervals all with at least αs points of S, the probability is no more than N(1−α)r−2
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that at least one will contain no points of a random draw of r − 2 points. This follows
from the fact that the probability of the union of a set of events is no more than the sum
of the probabilities of the events, even if the events are dependent. Now let FR be the set
of open intervals defined by pairs of points of R. Let X ⊂ FR be the set of such intervals
that contain at least αs points of S. The number N of intervals in X is no more than the
number of intervals in FR, which is O(r2). As in the above discussion for fixed intervals, the
probability is no more than N(1 − α)r−2 = O(r2)(1 − α)r−2 that there is some interval in
X that does not contain a point of R. This follows from the fact that each interval in X is
fixed with respect to the sample points that do not define it. Setting O(r2)(1−α)r−2 ≤ 1/2
and solving for α shows that there is a value of α that is O(log r/r), such that the above
probability is below 1/2. That is, the chance is at least 1/2 that every consecutive interval
defined by R contains fewer than sO(log r/r) points of S.

In this paper, this sort of argument is applied in a variety of ways, to the sampling of
points, hyperplanes, and simplices. In order to simplify the derivation of results for these
applications, and also demonstrate the essential character of the technique, Theorem 4.1
is stated and proven in fairly general terms. In the theorem, the elements of S are not
single points, but sets of points. Rather than the set of intervals on a line, the geometric
regions considered will be members of a family F , which in applications may be open balls,
simplices, halfspaces, cones, and so on. The notion of “the interval defined by two points” is
generalized to that of “regions in F defined by a i-tuple of S” using a collection of mappings
from Si to F . The quantity that the random sample is used to estimate is not the number
of elements of S in a given region in F , but rather the number of elements of S having
nonempty intersection with a given region.

It will be helpful to have the following definitions.

For a set X and integer i, let X i denote the set of i-tuples of X . For an integer n, let n

denote the set of integers {1, . . . , n}. Let b(j; t, α) denote the probability of j successes out
of t Bernoulli trials with probability of success α, that is,

b(j; t, α) =

(

t

j

)

αj(1 − α)t−j .

For region A and for B a set of regions (subsets) of Ed, let #(A, B) denote the number of
elements of B that have nonempty intersection with A.

Theorem 4.1. Let S and F be sets of regions of Ed, with |S| = s. For fixed integers i and
n, let νk, k ∈ n, be a collection of mappings from Si to F . Let R be a random sample of S,
of size r, and let FR denote

{νk(R̂) | k ∈ n, R̂ ∈ Ri},
the union of the images of Ri under the νk’s. Then for integer m and α ∈ [0, 1] with
m ≤ (r − i)α,

Prob{∃A ∈ FR with #(A, R) ≤ m and #(A, S) > αs} ≤ O(ri)
∑

j≤m

b(j; r − i, α), (≤)
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as r →∞. Similarly, for integer m and α ∈ [0, 1] with m ≥ (r − i)α,

Prob{∃A ∈ FR with #(A, R) ≥ m and #(A, S) < αs} ≤ O(ri)
∑

j≥m

b(j; r − i, α), (≥)

as r →∞.

The example above is an instance of this theorem where m = 0, using the inequality (≤).

When m is much larger than the mean αr, the binomial tail
∑

j≥m b(j; r − i, α) can be
made very small. (A similar statement is true for m≪ αr.) In this case, the chance is very
small that #(A, R) is a poor estimator for #(A, S) for A ∈ FR. In other words, with high
probability, every #(A, R) is a good estimator of #(A, S), in terms of the given choices of
m and α.

Proof. Only the inequality (≤) of the theorem is proven below. The other inequality can
be proven analogously.

The result follows from the facts that the probability of a union of events is no more than
the sum of the probabilities of the individual events, and that for random events X and Y ,
Prob{X and Y } ≤ Prob{X given Y }. In order to use these facts rigorously, an inequality
somewhat different from (≤) will be proven. Let the elements of R be numbered from 1
through r. Let ν′

k, for k ∈ n, map tuples in ri to F , defined by ν′
k(τ) = νk((Rτ1

, . . . , Rτi
)),

where τ = (τ1 . . . τi) ∈ ri. Then

Prob{∃A ∈ FR with #(A, R) ≤ m and #(A, S) > αs}
= Prob{∃τ ∈ ri, ∃k ∈ n with #(ν′

k(τ), R) ≤ m and #(ν′
k(τ), S) > αs},

since the two events are logically equivalent.

The facts above imply that

Prob{∃τ ∈ ri, ∃k ∈ n with #(ν′
k(τ), R) ≤ m and #(ν′

k(τ), S) > αs}
≤

∑

τ∈r
i,k∈n

Prob{#(ν′
k(τ), R) ≤ m and #(ν′

k(τ), S) > αs}

≤ n|ri| max
τ∈r

i,k∈n

Prob{#(ν′
k(τ), R) ≤ m given #(ν′

k(τ), S) > αs}

It suffices to bound Prob{#(ν′
k(τ), R) ≤ m given #(ν′

k(τ), S) > αs}, for any given τ ∈ ri

and k ∈ n. Let R′ denote the set of samples indexed by numbers in τ . Since the samples not
indexed by a number in τ are chosen independently of those that are indexed in that way, the
chance that a given region in R \R′ has nonempty intersection with ν′

k(τ) is #(ν′
k(τ), S)/s,

and the chance that #(ν′
k(τ), R) = j is b(j; r − i, #(ν′

k(τ), S)/s). The probability that the
number of samples intersecting ν′

k(τ) is no more than m is
∑

j≤m b(j; r− i, #(ν′
k(τ), S)/s).

That is,

Prob{#(ν′
k(τ), R) ≤ m} =

∑

j≤m

b(j; r − i, #(ν′
k(τ), S)/s).

10



For τ with #(ν′
k(τ), S)/s > αs, the bound

b(j; r − i, α) > b(j; r − i, #(ν′
k(τ), S)/s)

follows from the facts that the derivative of b(j; r − i, β) with respect to β is negative for
β > j/(r − i), and that

j/(r − i) ≤ m/(r − i) ≤ α < #(ν′
k(τ), S)/s.

Therefore

Prob{#(ν′
k(τ), R) ≤ m given #(ν′

k(τ), S) > αs} ≤
∑

j≤m

b(j; r − i, α).

The result follows.

The following corollary is used to prove the results on arrangement searching and polytope
separation that are given in this paper. It is a generalization of Lemma 7.1 of [6].

Corollary 4.2. Using the terminology of Theorem 4.1,

Prob{∃A ∈ FR with #(A, R) = 0 and #(A, S) > αs} ≤ O(ri)(1− α)r−i,

for fixed i and n. For suitable α = O(log r/r), this probability is no more than 1/2.

Proof. Use Theorem 4.1 with m = 0, in the (≤) case. The estimate for α follows using
elementary approximations.

The following corollaries to Theorem 4.1 are used to prove the new results on k-sets and
order k Voronoi diagrams that are given here.

Corollary 4.3. Using the terminology of Theorem 4.1,

Prob{∃A ∈ FR with #(A, R) ≥ m and #(A, S) < s/(r − i)} ≤ O(ri)(e/m)m,

for fixed i and n, when m and r/m2 are sufficiently large. Here e is the base of the natural
logarithm.

Proof. The application of Theorem 4.1 in the (≥) case, and with α = 1/(r − i), bounds
the above probability by

O(ri)
∑

j≥m

b(j; r − i, 1/(r − i)).

Note that
b(j + 1; r − i, 1/(r − i))

b(j; r − i, 1/(r − i))
≤ 1/(j + 1)

when j ≥ 1, so that

∑

j≥m

b(j; r − i, 1/(r − i)) ≤ b(m; r − i, 1/(r − i))(1 + O(1/m)),
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as m→∞. To bound b(m; r − i, 1/(r − i)), the Poisson approximation[20, 6.4-49]

b(m; r − i, 1/(r − i)) =
e−ρρm

m!
(1 + O(m2/r)) =

e−1

m!
(1 + O(m2/r)),

applies, since m2 ≤ r − i and ρ = (r − i)(1/(r − i)) = 1. Since

m! =
√

2πm(m/e)m(1 + O(1/m))

by Stirling’s formula, the result follows for m and r/m2 sufficiently large.

Corollary 4.4. Using the terminology of Theorem 4.1,

Prob{∃A ∈ FR with #((A, R) ≤ m and #((A, S) > αs} ≤ O(ri)e−αr
(eαr

m

)m

,

as r →∞, for fixed i and n, and for 1/m2α, m, and αr/m sufficiently large.

Proof. Application of Theorem 4.1 gives that the above probability is bounded by

O(ri)
∑

j≤m

b(j; r − i, α).

To bound the binomial tail
∑

j≤m b(j; r − i, α), the Poisson approximation

b(j; r − i, α) =
e−α(r−i)(α(r − i))j

j!
(1 + O(j2α)),

may be applied, for j2α ≤ m2α < 1. As αr/m→∞, the sum

∑

0≤j≤m

(α(r − i))j

j!
≤

∑

0≤j≤m

(αr)j

j!
=

(αr)m

m!
(1 + O(m/αr)).

The result follows by using Stirling’s approximation to m!.

5 A sharper bound for k-sets when d = 3

Let S ⊂ Ed be a set of s sites. If S′ ⊂ S has |S′| = k and S′ = h+ ∩ S for some hyperplane
h, then S′ is a k-set of S. Call a j-set of S a (≤k)-set if j ≤ k. This section gives a proof of
an asymptotic upper bound for gk,3(s), the maximum total number of (≤k)-sets of any set
of s sites in three dimensions. As in [14], it is assumed without loss of generality that the
sites are in general position, that is, no four are coplanar. Also, since the bound proven is
not O(s3) for k = Ω(s), there is no loss of generality in assuming that k = o(s).

The approach used here is to show that the number of (≤k)-sets of S can be related to the
number of (≤j)-sets of some R ⊂ S. This is done by using the fact that if R is chosen
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at random, there is a nonzero probability that R will satisfy certain conditions, roughly
that |h+ ∩ R|/r provides a good estimator for |h+ ∩ S|/s, for every oriented plane h. As
discussed in §1.2, in order to prove a result of this kind using the techniques of §4, it will be
necessary to introduce a collection of rO(1) regions associated with R, that “bracket” every
halfspace in an appropriate sense. Specifically, the j-separating cones of R will be used.
This construction may be regarded as a generalization of the outer cone construction of §3.

For R ⊂ Ed, the j-separating cone family of R, or sconej R, is the collection of all cones C
associated with some R′ ⊂ R and q ∈ R \ R′ satisfying the conditions that |R′| = j, and
that there is some oriented hyperplane h with q ∈ h ∩R and h+ ∩R = R′. The associated
cone C is defined as the set of rays from q that are normal to a hyperplane that separates
R′ and R \R′. That is, C is the set of all x ∈ Ed with

(x− q) · (y − q) ≥ 0 for all y ∈ R′, (∗)

and also
(x− q) · (y − q) ≤ 0 for all y ∈ R \R′. (∗∗)

Equivalently,

C =





⋂

y∈R′

h
+

y−q,q



 ∩





⋂

y∈R\(R′∪{q})

h
−

y−q,q



 .

Note that ocone P = scone0 vert P , for a polytope P . The following lemma is an analog of
Lemma 3.3.

Lemma 5.1. Let R ⊂ E3 in general position, and C ∈ sconej R. Then for b ∈ extr C and
q = ap C, the plane hb,q = aff T , where T ⊂ R, |T | = 3, and q ∈ T . Also, j ≥ |h+

b,q ∩ R| ≥
j − 2.

Proof. By [17, 2.6.2], a facet of C has the form hy−q,q ∩ C, for some y ∈ R \ {q}. By [17,
2.6.4], an edge of C is the intersection of two facets of C. For every b ∈ extr C, therefore,
there are y1, y2 ∈ R \ {q} with b + q ⊂ hy1−q,q ∩hy2−q,q. That is, (yi− q) ·ub = 0 for i = 1, 2
and ub ∈ b, so that y1, y2 ∈ hb,q. Since q ∈ hb,q, and y1, y2, and q are not collinear by the
assumption that R is in general position, it follows that hb,q = aff{q, y1, y2} = aff T .

From the definition of sconej R, it follows that |h+

b,q ∩R′| = j + 1 and |h−

b,q ∩R \R′| = r− j,
since q + b ⊂ C. The above discussion shows that |hb,q ∩ R| = |T | = 3, with q ∈ T . The
bound j ≥ |h+

b,q ∩R| ≥ j − 2 follows. .

Lemma 5.2. For R ⊂ E3 in general position, and C ∈ ∆(sconej R),

|C∪ ∩R| ≤ j,

and
|C∩ ∩R| ≥ j − 6.

Proof. For C ∈ sconej R, associated with j-set R′ and site q, the definition of sconej R
implies that for all x ∈ C, h+

x−q,q ∩ R ⊂ R′. Therefore, for C ∈ sconej R, |C∪ ∩ R| ≤ j.

13



Since C′ ∈ ∆(sconej R) satisfies C′ ⊂ C for some C ∈ sconej R, it follows that C′
∪ ⊂ C∪,

and |C′
∪ ∩R| ≤ j.

The relation |C∩∩R| ≥ j−6 follows from Lemma 3.1, which states that C∩ = ∩b∈extr Ch+
b,q.

By Lemma 5.1, |h+
b,q ∩ R| ≥ j − 2, for b ∈ extr C. Since | extr C| = 3 for C ∈ ∆(sconej R),

the relation follows.

Lemma 5.3. Let R ⊂ E3 in general position. If h is an oriented plane with |h+ ∩ R| >
j, then h+ ⊃ C∩, for some C ∈ ∆(sconej R). Similarly, if h is an oriented plane with
|h+ ∩R| ≤ j, then h+ ⊂ C∪, for some C ∈ ∆(sconej R).

Proof. Suppose h is an oriented plane with |h+ ∩ R| > j. Let a normal to h be y. Then

there is a translation hy,q of h with h+
y,q ⊂ h+, q ∈ R, |h+

y,q ∩ R| ≤ j, and |h+

y,q ∩ R| > j.
It is easy to show that there is a small perturbation y′ of y such that hy′,q ∩ R = {q},
|h+

y′,q ∩R| = j, and also h+
y,q ∩R ⊆ h+

y′,q ∩R and h−
y,q ∩R ⊆ h−

y′,q ∩R. The existence of this

R′ = h+
y′,q ∩ R implies that there is an associated C ∈ ∆(sconej R). The other conditions

satisfied by hy′,q imply that y + q ∈ C, so that h+ ⊃ h+
y,q ⊃ C∩.

A similar argument shows that if h is an oriented plane with |h+ ∩R| ≤ j, then h+ ⊂ C∪,
for some C ∈ ∆(sconej R).

Lemma 5.3 provides a useful bracketing of every halfspace between C∩ and C∪, for some
C ∈ sconej R. The next lemma shows that sconej R for random R is likely to have C∩ and
C∪ with proportions of S that reflect the proportion of R that they contain.

Lemma 5.4. Suppose S ⊂ E3 in general position, with |S| = s. Let R ⊂ S be a random
draw of size r. Then there is an integer j∗ = O(log r/ log log r), and a value α∗ = O(log r/r)
such that, with probability at least 1/2, it holds that for every C ∈ ∆(sconej∗ R),

|S ∩ C∩| ≥ s/(r − 7)

and
|S ∩ C∪| ≤ α∗s.

This implies that there exists a subset R ⊂ S such that ∆(sconej∗ R) satisfies these condi-
tions.

Proof. It suffices to show that for random R ⊂ S,

Prob{∃C ∈ sconej∗ R with |S ∩ C∩| < s/(r − 7)} (∩)

and
Prob{∃C ∈ sconej∗ R with |S ∩ C∪| > α∗s} (∪)

are each less than 1/4.

First consider probability (∩). By Lemma 3.1, each C∩ =
⋂

b∈extr C h+
b,q, where q = ap C. For

C ∈ ∆(sconej∗ R), extr C contains three rays. By Lemma 5.1, each ray in extr C is normal
to aff T , where T ⊂ R has q ∈ T and |T | = 3. Therefore, each C∩ for C ∈ ∆(sconej∗ R) is
defined by seven sites in R.
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To apply Corollary 4.3, take i of that corollary as 7, and n = 1, so that a single map ν from
S7 to cones in E3 is to be defined, so that all regions C∩ for C ∈ ∆(sconej∗ R) are in ν(R7).
To define ν in this way, let B = (q, x1, x2, y1, y2, z1, z2) ∈ S7, and let C be the cone with
apex q and with extreme rays normal to aff{q, x1, x2}, aff{q, y1, y2}, and aff{q, z1, z2}. Then
ν(B) is the region C∩. (To make the orientation of these normals precise, choose the normal
to aff{q, x1, x2} as the cross product (x1− q)× (x2− q), and so on.) Let FR = ν(R7). Then
the above discussion shows that every C∩ for C ∈ ∆(sconej∗ R) is in FR. By Lemma 5.2,
also |C∩ ∩R| ≥ j∗ − 6. It follows from Corollary 4.3 that

Prob{∃A ∈ FR with |A ∩R| ≥ j∗ − 6 and |A ∩ S| < s/(r − 7)} ≤ O(r7)(e/(j∗ − 6))j∗−6,

as r →∞, assuming that j∗−6 and r/(j∗−6)2 are sufficiently large. Under such conditions,
then,

Prob{∃C ∈ sconej∗ R with |S ∩C∩| < s/(r − 7)} ≤ O(r7)(e/(j∗ − 6))j∗−6.

A similar argument using Corollary 4.4 shows that

Prob{∃C ∈ sconej∗ R with |S ∩C∪| > α∗s} ≤ O(r7)e−α∗r

(

eα∗r

j∗ − 6

)j∗−6

,

as r →∞, for sufficiently large 1/(j∗ − 6)2α∗, j∗ − 6, and α∗r/(j∗ − 6).

Simple manipulations show that for suitable j∗ = O(log r/ log log r) and α∗ = O(log r/r),
the two bounding expressions above are each less than 1/4, and with the conditions on r, α∗,
and j∗ are satisfied. The two probabilities are then less than 1/4, and the lemma follows.

Lemma 5.5. Suppose R ⊂ E3. Then the number of cones in ∆(sconej R) is O(rj6) as
r, j →∞.

Proof. Since each C ∈ sconej R is a cone in E3, the number of cones in ∆(C) = | extr C|−2.
By Lemma 5.1, each extreme ray of C is normal to an orientation of hT = aff T , where
T ⊂ R, |T | = 3, T ∋ ap C, and j ≥ |R ∩ h+

T | ≥ j − 2. (It can be assumed that j < r/2,
so that the orientation of hT is uniquely determined.) A given triple contains only three
possible apex points, and for a given apex point, corresponds to at most two sets R′ defining
a cone. (Let T = {q, x1, x2}. If |h+

T ∩ R| = j, then R′ = h+
T ∩ R. If |h+

T ∩ R| = j − 2,
then R′ = h+

T ∩ R ∪ {x1, x2}. If |h+
T ∩ R| = j − 1, then either R′ = (h+

T ∩ R) ∪ {x1} or
R′ = (h+

T ∩R) ∪ {x2}.) Therefore

|∆(sconej R)| =
∑

C∈sconej R

| extr C| − 2,

which is no more than the number of triples in

{T | T ⊂ R, |T | = 3, j ≥ |R ∩ h+
T | ≥ j − 2}.

These triples T are closely related to the j′-sets of R, for j′ ≤ j. Indeed, if |h+

T ∩R| = j′, then

conv T is a facet of conv h
+

T ∩R, and h
+

T ∩R is a (j′ +3)-set of R. Since conv h
+

T ∩R has O(j)
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facets, the number of triples contained in the set defined above is O(j)gj,3(r) = O(j)O(rj5),
by [5]. Therefore, the number of cones in ∆(sconej R) is bounded by O(rj6), as r →∞.

Now to put these results together.

Theorem 5.6. Let gk,3(s) denote the maximum total number of (≤k)-sets of of any set of
s sites in E3. Then gk,3(s) = O(sk2 log8 s/(log log s)6).

Proof. Let S ⊂ E3 of size s. Suppose some R ⊂ S of size r = s/k is chosen that satisfies
the conditions of Lemma 5.4, with j∗ and α∗ as in that lemma. Let h be an oriented plane
defining a (≤k)-set Sh of S. It must be the case that |h+ ∩ R| ≤ j∗. If |h+ ∩ R| > j∗,
then by Lemma 5.3, h+ ⊃ C∩, for some C ∈ ∆(sconej∗ R). By the assumption about R,
|S ∩ C∩| ≥ s/(r − 7) > k, and h cannot define a (≤k)-set of S. Since |h+ ∩ R| ≤ j∗, by
Lemma 5.3 we have h+ ⊂ C∪, for some C ∈ ∆(sconej R). Therefore h+ ∩ S = h+ ∩C∪ ∩S,
and Sh is a (≤k)-set of C∪ ∩ S. By the assumption about R, |S ∩C∪| ≤ α∗s = sO(log r/r),
so we have

gk,3(s) = |∆(sconej∗ R)|gk,3(sO(log r/r)).

By Lemma 5.5,

|∆(sconej∗ R)| = O(rj∗
6) = O(r(log r/ log log r)6) = O(s/k(log s/ log log s)6),

and by [8],
gk,3(sO(log r/r)) = O((sO(log r/r))2k) = O(k3(log s)2).

The result follows.

6 Constructing order k Voronoi diagrams

A random sampling approach may be used not only to bound the number of k-sets, but
also to determine all of them. This will be illustrated with the example of order k Voronoi
diagrams in the 2-dimensional case. Let S ⊂ E2 be a set of s sites for which an order k
Voronoi diagram is desired. For ease of exposition, it will be assumed that no four of the
sites of S are cocircular.

To apply random sampling, it will be helpful to use the relationship between a k-VoD (order
k Voronoi diagram) and the k-sets of a set of sites on a paraboloid in three dimensions. This
relationship will be used to reduce the k-VoD construction problem to that of computing
all Vk(S′)-triples, for a set S′ ⊂ E3 related to S.

A Vk(S′)-triple, for S′ ⊂ E3, will be defined as a set T ⊂ S′ with |T | = 3 and with hT = aff T
having an orientation for which |h+

T ∩ S′| = k. As discussed in the last section, these triples
are closely related to k-sets, and correspond to extreme rays of certain cones in sconej S′,
for j = k, k + 1, k + 2. Their relevance to k-VoD construction is discussed in the following
lemma.
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Lemma 6.1. Construction of the order k-VoD of a set S ⊂ E2 is equivalent, up to O(sk)-
time, to the determination of all Vk−1(γ(S))-triples and Vk−2(γ(S))-triples, where γ : E2 →
E3 by γ((x, y)) = (x, y, x2 + y2), and S′ = γ(S).

(In fact the mapping γ is not unique in this regard: see [13, 23, 2].)

Proof. It is well-known that every vertex v of a k-VoD is the center of some circle Cv

inscribed on three sites, such that the circle contains within it k − 1 or k − 2 sites, and all
such circles correspond to k-VoD vertices. The mapping γ has the property that for any
circle C ⊂ E2, the set γ(C) is contained in a plane h = aff γ(C), indeed γ(C) = h ∩ γ(E2),
and the open disk D bounded by C satisfies γ(D) = h+ ∩ γ(E2). It follows that for every
vertex v of the k-VoD of S, the sites γ(Cv ∩S) are Vm(S′)-triples, where m = k−1 or k−2.

Given a suitable representation of the k-VoD of S, the triples Cv ∩ S are readily found,
yielding the Vm(S′)-triples in the O(sk)-time necessary to report them. (By [21], there are
O(sk) such triples.) Given the Vm(S′)-triples, for m = k − 1, k − 2, the triples of the form
Cv ∩S, and the vertices of the k-VoD of S, are immediately known. It remains to show that
the adjacency relations between the vertices can be determined quickly using the triples
Cv ∩S. It is well-known that there is an edge between vertices v and v′ iff the triples Cv ∩S
and Cv′ ∩ S have two sites in common. Suppose the sites of S are numbered S1 through
Ss, and each vertex v has triple Sa, Sb, Sc, with a < b < c. Then if a radix sort is applied
to the set of all ordered triples, over all vertices, of the form (Sa, Sb, Sc), (Sb, Sc, Sa), and
(Sa, Sc, Sb), then triples for vertices with an edge between them will be adjacent on the
sorted list.

Hereafter, the problem considered will be that of finding Vk(S′)-triples, for S′ = γ(S), S ⊂
E2. The general approach for this problem will be to use the separating cone construction
to divide and conquer. Suppose values r, j∗, and α∗ are chosen as in Lemma 5.4, with
r − 7 < s/k. Let R ⊂ S′ satisfy the conditions of Lemma 5.4. The set R can be found
by repeatedly sampling S′, testing each time for the satisfaction of the conditions until
successful. This will take two trials, on the average.

With such a subset R available, the problem of determining Vk(S′)-triples can be reduced
to that of determining Vk(S′ ∩ C∪)-triples, for all C ∈ ∆(sconej∗ R). As in the proof of
Theorem 5.6, suppose h is an oriented plane such that |h+ ∩ R| > j∗. Then h ∩ S′ is not
a Vk(S′)-triple, since by Lemma 5.3, h+ ⊃ C∩ for some C ∈ ∆(sconej∗ R), and by the
assumption about R, |S′ ∩ C∩| ≥ s/(r − 7) > k. On the other hand, if |h+ ∩ R| ≤ j∗,
then h+ ⊂ C∪, for some C ∈ ∆(sconej∗ R), so that if h ∩ S′ is a Vk(S′)-triple, then it is a
Vk(S′ ∩ C∪)-triple. The converse does not necessarily hold, however, so if h0 ∩ S′ is some
Vk(S′ ∩ C∪)-triple, it must be tested that h+

0 ⊂ C∪. This may readily be done in constant
time.

A function for computing Vk(S′) using these ideas is sketched in the pseudocode in Figure 2.
In the function, it is assumed that S′ = γ(S) for some S ⊂ E2. Note that by Lemma 6.1,
when s ≤ k(r − 7), the Vk(S′)-triples can readily be found given the (k + 1)-VoD of S.

One key step of the function left unresolved: How is ∆(sconej∗ R) to be computed? The
following lemma, with Lemma 6.1, shows that this step may be reduced to the construction
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function Find Triple(k : integer ; S′ : Set of Sites)
return Set of Triples ;

co r is a (sufficiently large) constant, and S′ = γ(S) for some S ⊂ E2 oc;
s← |S′|;
if s ≤ k(r − 7) then Determine the Vk(S′)-triples by finding the (k + 1)-VoD of S

using the [4] procedure;
else

repeat

Choose random sample R ⊂ S′ with |R| = r;
Construct ∆(sconej∗ R);

until ∀C ∈ ∆(sconej∗ R), |S′ ∩ C∪| ≤ α∗s and |S′ ∩ C∩| ≥ s/(r − 7);
for C ∈ ∆(sconej∗ R) do

Output those triples T in Find Triple(S′ ∩C∪) with hT = aff T satisfying h+
T ⊂ C∪;

od;
fi;
end function Find Triple;

Figure 2: Function Find Triple for finding Vk(S′)-triples

of a few order ≈ j∗ Voronoi diagrams.

Lemma 6.2. Computation of ∆(sconek S′) is no harder than computation of all Vm(S′)-
triples, for m = k, k− 1, k− 2. That is, given all such triples, the cones in ∆(sconek S′) can
be found in O(1) time per cone.

Proof. By Lemma 5.1, every extreme ray of a cone in ∆(sconek S′) corresponds to a Vm(S′)-
triple, for some m = k, k − 1, or k − 2. It suffices to show that the adjacency relations
between edges of cones in sconek S can be determined from these triples. Note that all
triples associated with the extreme rays of a given cone C contain ap C. Furthermore, by
the proof of Lemma 5.1, any two edges bounding the same facet of C have associated triples
that share not only ap C, but another site as well. Therefore, a radix sort like that described
in the proof of Lemma 6.1 will yield the adjacency relations for extreme rays in O(1) time
per ray. As discussed in the proof of Lemma 5.5, this implies that O(1) time is needed per
cone in ∆(sconek S′)

Lemmas 6.1 and 6.2, together with the above discussion, imply the following.

Lemma 6.3. The function Find Triples determines all Vk(S′)-triples when k and S′ are
input.

Lemma 6.4. The function Find Triples requires O(s1+ǫk) time to determine the Vk(S′)-
triples of s sites S′. The constant factor of this asymptotic bound depends on ǫ.
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Proof. The work performed at each call is as follows: If s ≤ k(r − 7), then a (k + 1)-VoD
of no more than k(r − 7) sites is constructed using the [4] algorithm. This requires no
more than (k2 log2 k)O(r2 log2 r) time, as r → ∞. If s > k(r − 7), then the time required
includes that for computing a constant number of order O(j∗) Voronoi diagrams of r sites,
requiring O(rj∗

2 log r) time, using the [21] algorithm. The number of cones of ∆(sconej∗ R)
is asymptotically the same as the size of such diagrams by Lemmas 6.1 and 6.2, and so
is O(rj∗). The expected time required to check that a sample R satisfies the conditions
of Lemma 5.4 is therefore sO(rj∗) = sO(r log r). The number of recursive calls to the
function is also |∆(sconej∗ R)| = O(rj∗), and the size of each input to a recursive call is
sα∗ = sO(log r/r). To test that each triple T has hT = aff T satisfying h+

T ⊂ C∪, the
time required is sO(log r/r)k for each of the O(rj∗) recursive calls, or O(rj∗)sO(log r/r)k =
skO(log2 r). Putting these facts together, the time t(s) required by the algorithm satisfies
the recurrence

t(s) ≤ skO(r log r) + O(r log r)t(sO(log r/r)),

when s > k(r − 7), with
t(s) ≤ (k2 log2 k)O(r2 log2 r),

when s ≤ k(r−7). These asymptotic bounds are as r →∞. It is readily seen that the depth
D of this recurrence is O(log(s/k)/ log(r/ log r)), and that the solution t(s) is bounded by

skO(r log r)(log r)2(D+1) + (k2 log2 k)O(r2 log2 r)(r log r)D,

which is

skO(r log r)(s/k)O(log log r/ log r) + k2 log2 kO(s/k)1+O(log log r/ log r),

or O(s1+ǫk) time, as s → ∞, where the constant factor of this asymptotic bound depends
on ǫ.

7 Searching Arrangements

In this section an algorithm for searching arrangements is given. The algorithm constructs
a data structure so that given a query point a, the cell containing a may be found quickly.

Some simple facts about arrangements will be useful. Every k-face f of AS is determined
by a partition of S into sets S0

f , S+
f , and S−

f , with

f =





⋂

h∈S0
f

h



 ∩







⋂

h∈S+

f

h+






∩







⋂

h∈S−

f

h−






.

A simple arrangement is one for which every intersection of k hyperplanes is a (d− k)-flat,
for 1 ≤ k ≤ d + 1. (Following [12], the empty set is a (−1)-flat, by convention.) A k-face f
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of a simple arrangement satisfies |S0
f | = d− k. Furthermore, if g is a (k − 1)-face that is a

facet of f , then S0
g = S0

f ∪ {h}, for some hyperplane h, and if h ∈ S+
f , then S+

g = S+
f \ {h}

and S−
g = S−

f . An analogous relation holds if h ∈ S−
f .

Edelsbrunner and others [12] give an algorithm for determining from S the facial structure
of AS , that is, the faces of AS and their containment relations. Given this information,
∆(AS) may be determined by the algorithm of §2 in time linear in the complexity of the
facial structure of AS .

An algorithm for searching arrangements results from the following fact:

Lemma 7.1. Let R ⊂ S be a random sample of a collection of hyperplanes S in Ed. Then
with probability at least 1/2, every simplex in ∆(AR) is cut by sO(log r/r) hyperplanes of
S, where r = |R|, s = |S|. A simplex will be said to be cut by a hyperplane if the hyperplane
has nonempty intersection with the relative interior of the simplex, but does not contain
that interior.

Proof. This lemma is an application of Corollary 4.2. The set S of that corollary
corresponds to the collection of hyperplanes S. The integer i of that lemma takes the value
d(d+ 1). A collection of mappings ν will be defined here so that a region that is the relative
interior of a region in ∆(AR) is an element of FR. The result follows from Corollary 4.2,
given that the collection of mappings is so defined.

It will be convenient to index the mappings ν as two collections νd,m,d′ and ν′
d,m,d′, for

0 ≤ m ≤ d and 1 ≤ d′ ≤ d. That is, the number n of mappings is 2d(d + 1). The definition
of a given mapping will ensure that a certain kind of region from ∆(AR) is included in
FR. For example, the definition of the map νd,m,d will ensure that all regions that are
the relative interiors of (bounded) m-simplices are included in FR. The map ν′

d,m,d will
ensure that the relative interiors of (unbounded) m-cones of ∆(AR) are present in FR. The
mappings νd,m,d′ and ν′

d,m,d′ , for d′ < d, are included to account for regions of ∆(AR) that
are present when the arrangement AR is degenerate, as occurs when the set of normals to
the hyperplanes in R has affine dimension d′.

Consider first νd,m,d, which will be defined so that relintX is included in FR, where X is
a m-simplex in ∆(AR). How is X determined by the hyperplanes of R? Each vertex of
X is the intersection of d hyperplanes, and X has m + 1 vertices. Therefore, if I ∈ Si,
consider the leading (m + 1)d places of I to be m + 1 groups of d hyperplanes, and define
νd,m,d(I) to be the interior of the simplex whose vertices are the intersections of the groups
of hyperplanes. Note that the hyperplanes in I need not be distinct. If one group of d
hyperplanes does not intersect in a point, or if the intersection points all lie in a hyperplane,
define νd,m,d(I) to be the null set. With this definition of νd,m,d, any m-simplex interior in
∆(AR) will be present in FR.

It will hereafter be convenient to refer to the leading j places of a tuple I ∈ Si as I≤j .

Now suppose X ∈ ∆(AR) is unbounded, and is the result of the triangulation of an un-
bounded cell ofAR that has a vertex. Then X is a cone, and is an m-simplex in a generalized
sense. That is, X is the convex hull of a single point together with m “points at infinity.”
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Such a point at infinity can be considered to be the endpoint of a 1-flat that is the intersec-
tion of d− 1 hyperplanes. For I ∈ Si, consider I≤d+m(d−1) to be a group of d hyperplanes,
followed by m groups of d − 1 hyperplanes. Define ν′

d,m,d(I) to be the region that is the
relative interior of the cone whose apex is the intersection of the group of d, and whose
extreme rays are parallel to the intersections of the groups of d− 1 hyperplanes. As before,
if the result is ill-defined or degenerate, map to the null set.

Finally, suppose X ∈ ∆(AR) is an unbounded region that is the result of the triangulation of
a cell in AR that has no vertex. Such cells occur when the set of normals to the hyperplanes
in R has affine dimension d′ with d′ < d. In this case, as discussed in §2, there is a
linear subspace L of dimension d′ such that every cell P in AR has a representation P =
L⊥ + (L ∩ P ), where L ∩ P has a vertex. Indeed, L may be taken as the linear closure of
the set of normals to the hyperplanes in R. The regions in ∆(AR) have the form L⊥ + C,
where C is a simplex in a triangulation of L ∩ P for some P ∈ AR. If v ∈ vert  L ∩ P , then
v + L⊥ is a (d− d′)-flat that is the intersection of d′ hyperplanes in R.

To define νd,m,d′(I), for d′ < d, let I ∈ Si, and consider I ′ = I≤(m+1)d′ . Let L be the linear
closure of the set of normal vectors to hyperplanes in I ′. If d′ 6= dim L, take the value of
νd,m,d′(I ′) to be the null set. If d′ = dim L, consider the tuple

I ′′ = L ∩ I ′ = (L ∩ I1, . . . , L ∩ I(m+1)d′).

Apply νd′,m,d′ to I ′′ in the natural way in L (rather than Ed′

), and take νd,m,d′(I) to be
L⊥ + νd′,m,d′(I ′′). With such regions included in FR, the regions of ∆(AR) that result from
the triangulation of some L ∩ P will be contained in FR, when the polyhedral set L ∩ P is
bounded. The mappings ν′

d,m,d′(I), for d′ < d, can be defined in an analogous way, handling
the case where the polyhedral set L ∩ P is unbounded.

By including these different mappings, all possible sets from ∆(AR) will be contained in FR.
As mentioned, the number of these mappings is 2d(d + 1) and they are defined on Sd(d+1).
The lemma follows.

Suppose query point a ∈ A ∈ ∆(AR), and A is cut by a set of hyperplanes S∗. If it is known
which cell of AS∗ contains a, then the cell of AS containing a may be readily determined.
This suggests the following arrangement searching algorithm: to build a search tree for a set
of hyperplanes S, take a random sample R and compute ∆(AR). Determine if every simplex
in ∆(AR) is cut by sO(log r/r) hyperplanes of S. If not, take another sample, repeating until
this condition is satisfied, in O(1) expected trials. For each simplex A ∈ ∆(AR), determine
the hyperplanes of S that cut A, and recursively build a search tree for them. Given a query
point a, determine the simplex of ∆(AR) containing a in its relative interior, and search the
tree associated with the hyperplanes cutting ∆(AR).

A space and time bound for this algorithm follow from bounds on the number of children
of a node in a constructed search tree, and the number of hyperplanes associated with each
child. The above lemma gives the latter, and the following lemma gives the former:

Lemma 7.2. When an arrangement AR of r hyperplanes is given a triangulation ∆(AR)
using the inductive method of §2, |∆(AR)| = O(rd), as r→∞, for fixed d.
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Proof. We first prove the lemma for simple arrangements, and then show that nonsimple
arrangements require no more simplices to triangulate.

A proof of the lemma for simple arrangements stems from this observation: The number of
simplices in the triangulation given by the described inductive procedure is at most twice the
total number in the triangulations of the (d− 1)-faces, since each (d− 1)-face is a facet of at
most two d-faces. This number, in turn, is at most four times the total number of simplices
in triangulations of the (d− 2)-faces, since in a simple arrangement a (d− 2)-face is a facet
of at most four (d− 1)-faces. Indeed, from the facts given about simple arrangements, it
follows directly that a k-face is a facet of at most 2(d− k) of the (k + 1)-faces. The lemma
follows immediately for simple arrangements, using the O(rd) bound on the number of
vertices of an arrangement in Ed [12].

For nonsimple arrangements, it is enough to show that for any nonsimple arrangement
AS , there is another one AS′ such that |∆(AS)| ≤ |∆(AS′ )|. The arrangement AS′ will be
“almost” simple, that is, every k hyperplanes of S′ have intersection with dimension at most
d− k. If a set of k hyperplanes have an intersection of dimension less than d− k, then their
intersection is empty, so the above bounding argument for simple arrangements will apply
to AS′ . The arrangement AS′ is obtained by perturbing, one by one, any hyperplanes of
S that meet “redundantly,” that is, where k hyperplanes meet at a j-flat, with j > d− k.
Suppose h is a hyperplane of such a group, and f is a face of A for which h is supporting.
Since h meets other hyperplanes redundantly, it may be that if h were removed from S, then
f would be unchanged. In this case, a small perturbation of h would yield some hyperplane
h′ that either does not touch f (when h′ ∩ f = {}) or cuts f in two (when h′ ∩ f 6= {}).
In either situation, the triangulation of the result requires as many simplices as does the
triangulation of f . It may be h is not redundant for f , so that removal of h from S results in
the alteration of face f . In this case, a sufficiently small perturbation of h results in a new
face f ′ with the same facial structure as f , and requiring as many simplices to triangulate.

This completes the argument for nonsimple arrangements, and for this lemma.

By choosing a sufficiently large value of r, the two lemmas and the discussion above yield
the following:

Theorem 7.3. A data structure for searching an arrangement of s hyperplanes in d dimen-
sions can be constructed in O(sd+ǫ) expected time and O(sd+ǫ) worst-case space, so that
queries may be answered in O(log n) time, as s→∞, for fixed d and for any fixed ǫ > 0.

8 Determining the Separation of Polytopes

Recall that the separation of two polytopes is the minimum distance from a point of one
to a point of the other. These points need not be vertices. Two points realizing the sep-
aration of two polytopes will be termed a separation pair. In this section an algorithm
is given that determines a separation pair for two polytopes A, B ⊂ Ed in expected time
O(| vert A|⌊d/2⌋ + | vert B|⌊d/2⌋).
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Figure 3: A separation pair for two polygons

From §2, recall that B(P ) denotes the boundary complex consisting of the facets of a
polytope P , and their faces. The algorithm begins as follows. The random samples
RA ⊂ ∆m(B(A)) and RB ⊂ ∆m(B(B)) are chosen, where ∆m(B(P )) denotes the set of
simplices of maximal affine dimension in ∆(B(P )). After this choice of sample, a separation
pair (a, b) is determined recursively for A′ = conv RA and B′ = conv RB .

By the Upper Bound Theorem [22], the number of facets of A′ is O(r
⌊d/2⌋
A ), where rA = |RA|.

The proof of that theorem implies that the number of simplices in ∆(B(A′)) is is also

bounded by O(r
⌊d/2⌋
A ), so this fact and the analogous bound for B′ give a bound on the size

of the input for computing a separation pair of A′ and B′.

The usefulness of the separation pair of A′ and B′ is due to the following simple lemma,
observed by Dobkin and Kirkpatrick [11]:

Lemma 8.1. If a ∈ A′ and b ∈ B′ are a separation pair for convex sets A′ and B′, then
ha−b,a is a supporting hyperplane of A′ and ha−b,b is a supporting hyperplane of B′.

Proof. Omitted.

Note also that no point pairs in h
+

a−b,a and h
−

a−b,b are closer together than a and b. As
a result, a separation pair for A and B is either (a, b), or a separation pair of A and
B′′ = conv(B∩h+

a−b,b), or of B and A′′ = conv(A∩h−
a−b,a). (See Figure 3. The samples RA

and RB are shown in heavy lines. The polygons A′ and B′ are darkly shaded, the polygons
A′′ and B′′ are lightly shaded.)

As implied by Lemma 8.2 below, with a probability at least 1/2, the number of simplices
of ∆m(B(A)) having nonempty intersection with h−

a−b,a is nAO(log rA/rA), where nA =
|∆m(B(A))|. Therefore, with probability at least 1/2, ∆m(B(A′′)) will have nAO(log rA/rA)
simplices. An analogous relation holds for B′′. Since the probability of choosing a sample
RA with these properties is at least 1/2, an average of two trials suffices to find such a
sample. Testing whether or not RA and RB satisfy these relations requires O(nA + nB)
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time, since for a given sample, each simplex in ∆m(B(A)) and ∆m(B(B)) must be tested for
intersection with the appropriate halfspace. Thus expected O(nA + nB) time is sufficient to
find suitable samples RA and RB.

Lemma 8.2. Given a d-polytope P ⊂ Ed with boundary complex B(P ), let R ⊂ ∆m(B(P ))
be a random sample of size r. With probability at least 1/2, if h is a hyperplane with
R∩h+ = {}, then the number of simplices of ∆m(B(P )) having nonempty intersection with
h+ is |∆m(B(P ))|O(log r/r), as r→∞.

Proof. This lemma is an application of Corollary 4.2, with the set S of that corollary taken
to be ∆m(B(P )) in this case. It will be shown that the appropriate value for the integer i
is in this case d + 1. The main idea is to apply the outer cone construction to conv R.

First suppose that d = dim R, so that the cones in ocone conv R are pointed. From
Lemma 3.4, for some C ∈ ∆(ocone conv R) it holds that h+ ⊂ C∪. Since C∪ is the union of
d open halfspaces defined by facets of conv R, the lemma follows for the d = dim R case by
showing that with probability at least 1/2, every such halfspace has nonempty intersection
with an O(log r/r) fraction of the simplices of S = ∆m(B(P )). If a collection of mappings
is defined on Si such that these halfspaces are included in FR, then the lemma will hold, at
least in the case where d = dim R.

Each halfplane determined by a facet of conv R is the affine closure of d vertices of conv R.
The orientation of such a halfplane h∗ can be determined by choosing another vertex v of

conv R, and requiring that v /∈ h∗
+

. To apply Corollary 4.2, it is thus necessary to define
a collection of mappings on Si so that included in this collection are all possible ways of
obtaining d + 1 vertices from at most d + 1 (d− 1)-simplices.

Such patterns of choices will be encoded as follows. Suppose the vertices of each simplex in
S are numbered from 1 to d. Let J denote a (d+1)-tuple (J1, . . . , Jd+1), for k = 1, . . . , d+1,
where Jk denotes a an ordered pair (Jk,1, Jk,2), with 1 ≤ Jk,1 ≤ d and 1 ≤ Jk,2 ≤ d + 1. Let
J∗ denote the collection of all such (d + 1)-tuples, with the condition that all ordered pairs
in a tuple J are distinct. Then J ∈ J∗ defines a way of choosing d + 1 vertices from the
simplices in I ∈ Si. That is, for choice k of a vertex, pick the vertex numbered Jk,1 from
IJk,2

. The distinctness condition implies that d + 1 vertices will be picked.

The collection J∗ contains all possible patterns of choice of d + 1 vertices from a given
I ∈ Si. Every J ∈ J∗ defines a mapping νJ from Si to the set of open halfspaces in Ed:
Given I ∈ Si, choose the vertices from the simplices in I as indicated by J . The value of
νJ(I) is then the halfspace defined by these d + 1 vertices, as indicated above. The affine
closure of the first d bounds the halfspace, and the last vertex determines the orientation.
(If the affine dimension of the set of chosen vertices is not d, map I to the null set.)

With the mappings νJ so defined, Corollary 4.2 can be applied to show that when d = dim R,
then with probability 1/2 the conditions of the lemma obtain for an arbitrary halfspace h+.
However, it may be that d > dim R. Such an occurrence would be strong evidence that
most simplices of S are contained in aff R. This notion can be proven rigorously. Suppose
h is a hyperplane with R ∩ h+ = {}. Then the outer cone construction may be applied to

24



conv R, relative to aff R, to show that the half-flat h+ ∩ aff R is contained in the union of
dim R half-flats contained in aff R. Since

h+ ⊂ (Ed \ aff R) ∪ (h+ ∩ aff R),

it suffices to show that with probability at least 1/2, few simplices of S intersect a region
of the form (Ed \ aff R) ∪ h+

0 , where h+
0 is a half-flat of aff R that is bounded by the affine

closure of a facet of conv R.

To allow for d > dim R in the application of Corollary 4.2, it is thus sufficient to define a
collection of mappings νd′,Jd′

∗

, 0 ≤ d′ ≤ d, where Jd′

∗ encodes a pattern of choices of d′ + 1

vertices from the first d′ + 1 simplices in some I ∈ Si, and those vertices define a region as
follows: Let V denote the set of d′ + 1 vertices, let V ′ ⊂ V denote the set of the first d′

vertices, and let v denote the last vertex. Then map I to the region

(Ed \ aff V ) ∪ h+
0 ,

where h0 is the half-flat of aff V bounded by aff V ′, and oriented so that v /∈ h+
0 .

With νd′,Jd′

∗

so defined, sufficient regions are included in FR to allow the application of
Corollary 4.2 to prove the lemma. The integer n of that corollary is in this case bounded
by d(d + 1)d+1 .

All of the subproblems implied by the above sketch of the algorithm may be solved recur-
sively, with the recursion terminating by using a “brute force” approach for suitably simple
polytopes. If T (nA, nB) is the expected time necessary to determine a separation pair for
polytopes A and B with nA = |∆m(B(A))| and nB = |∆m(B(B))|, then

T (nA, nB) ≤ O(nA + nB)

+ O(r
⌊d/2⌋
A log rA + r

⌊d/2⌋
B log rB)

+ O(nA log rA/rA + nB log rB/rB)

+ T (O(r
⌊d/2⌋
A ), O(r

⌊d/2⌋
B ))

+ T (nA, nBO(log rB/rB))

+ T (nAO(log rA/rA), nB)

The first term in the bound is the time necessary to manipulate the triangulations of the
polytopes, assuming that the facial lattices of the polytopes are given as input. The first
term also bounds the expected time necessary to find suitable random samples, as described
above. The second term is the time needed to determine the convex hulls of sets of O(rA)
and O(rB) points, the number of vertices in the simplices of RA and RB [25] . (It is
assumed that d > 1.) The third term is the time needed to compute the facial lattices of
the triangulations of A′′ and B′′: since each simplex in ∆(B(A′′)) is the result of cutting a
simplex in ∆m(B(A)) by a hyperplane, the cost of computing ∆m(B(A′′)) is constant per
simplex, with the constant dependent on the dimension. The remaining terms bound the
time necessary for the recursive computation of separation pairs.
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The asymptotic bounds depend on rA or rB , as appropriate, as well as the dimension.

With sample sizes rA = n
1/d
A and rB = n

1/d
B , the result is an algorithm that requires O(nA +

nB) expected time. By the Upper Bound Theorem [22], nA = O(| vert A|⌊d/2⌋) and nB =
O(| vert B|⌊d/2⌋), yielding the following theorem.

Theorem 8.3. The separation of two polytopes A, B ⊂ Ed may be computed in expected
time O(| vert A|⌊d/2⌋ + | vert B|⌊d/2⌋), where the expectation is with respect to the random
behavior of the algorithm.

9 Conclusions

The approach to geometric computations described here has several advantages: it is general,
and applies to many problems and to higher dimensions; it is simple, and yields algorithms
that may be practical, and are at least not baroque; and it is flexible, and yields various
tradeoffs by simply altering the sample size.

Several natural questions are associated with the k-set bound given here. The new bound,
and earlier bounds for the planar case, suggest the conjecture that gk,d(s) = O(s⌊d/2⌋k⌈d/2⌉).
Suppose it can be shown that for some C independent of s and k, gk,d(s) = O(s⌊d/2⌋kC).
Then the proof techniques given here readily yield the result gk,d(s) = O(s⌊d/2⌋k⌈d/2⌉)O(sǫ),
for any fixed ǫ > 0.
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