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Abstract

We use random sampling for several new geometric algorithms. The
algorithms are “Las Vegas,” and their expected bounds are with respect
to the random behavior of the algorithms. These algorithms follow from
new general results giving sharp bounds for the use of random subsets in
geometric algorithms. These bounds show that random subsets can be
used optimally for divide-and-conquer, and also give bounds for a simple,
general technique for building geometric structures incrementally. One
new algorithm reports all the intersecting pairs of a set of line segments
in the plane, and requires O(A + n log n) expected time, where A is the
number of intersecting pairs reported. The algorithm requires O(n) space
in the worst case. Another algorithm computes the convex hull of n points
in E

d in O(n log n) expected time for d = 3, and O(nbd/2c) expected time
for d > 3. The algorithm also gives fast expected times for random input
points. Another algorithm computes the diameter of a set of n points in
E

3 in O(n log n) expected time, and on the way computes the intersection
of n unit balls in E

3. We show that O(n log A) expected time suffices
to compute the convex hull of n points in E

3, where A is the number of
input points on the surface of the hull. Algorithms for halfspace range
reporting are also given. In addition, we give asymptotically tight bounds
for (≤k)-sets, which are certain halfspace partitions of point sets, and give
a simple proof of Lee’s bounds for high order Voronoi diagrams.

1 Introduction

In recent years, random sampling has seen increasing use in discrete and com-
putational geometry, with applications in proximity problems, point location,
and range queries [11, 12, 28]. These applications have largely used random
sampling for divide-and-conquer, to split problems into subproblems each guar-
anteed to be small. In this paper, we use random sampling in a similar way,
with the additional observation that the total of the sizes of the subproblems is
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small on the average. This fact gives improved resource bounds for a variety of
randomized algorithms.

A key application of this sharper average-case bound is a general result im-
plying that a simple, general technique for computing geometric structures yields
asymptotically optimal algorithms for several fundamental problems. This method
is a small change to one of the simplest ways of building a geometric structure,
the incremental approach: for example, for determining the intersection of a set
of halfspaces, this approach adds the halfspaces one by one and maintains the
resulting intersections.

Such an incremental approach gives an optimal algorithm for constructing
an arrangement of hyperplanes[23]. In general, we have a set of objects, not
necessarily halfspaces or hyperplanes, that determine a structure, and we add
the objects one by one, maintaining the resulting structure. One variant of
this incremental approach, a simple way to randomize the process, is to add
the objects in random order. Chew[10] used this approach for building Voronoi
diagrams of the vertices of convex polygons. In this paper, we prove a general
theorem regarding a version of this randomized and incremental technique. We
should note that although our technique is incremental, it is not on-line, as some
simple information is maintained for the objects that are not yet added.

Some general terminology and assumptions: in this paper, the dimension d
is generally considered to be fixed. The expected resource bounds shown are
“Las Vegas,” and the expectations are with respect to the random behavior
of the algorithms, unless otherwise indicated. The parameter A is generally
used to denote the size of the Answer to a computation. The inputs to the
algorithms will be assumed nondegenerate, so an input set of line segments has
no three intersecting at the same point, an input set of points in Ed has no
d + 1 coplanar, and so on. This is no great loss of generality, as usually small
tie-breaking perturbations can be appropriately applied, and the answer sizes A
as defined are unchanged. Recently systematic methods have been developed to
apply such perturbations “formally,” that is, to break ties in an arbitrary but
consistent way, so as to simulate nondegeneracy with degenerate input [22, 44].

1.1 Problems, results, and related work

This paper is a combination of the two papers[14] and [16], with a sharper
proof of the main divide-and-conquer theorem (here Theorem 3.6). The results
can be viewed as an improvement to those of [12], and this fact suggested the
title of this paper. The results in this paper have been used in an algorithm
for triangulating simple polygons[17], for small-dimensional linear and integer
programming[13], for an optimal parallel algorithm for Voronoi diagrams[39],
and in various combinatorial results on arrangements[15].

Algorithms for trapezoidal diagrams and line segment intersec-

tions. For S a set of n line segments in the plane, what are the pairs of
intersecting segments of S? This computational problem has received much
attention, culminating in the recent algorithm of Chazelle and Edelsbrunner
requiring O(A + n logn) time in the worst case to report the A intersecting
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pairs [5]. Their algorithm requires (moderately) sophisticated data structures
and many sophisticated algorithmic techniques, and Ω(n + A) space. This pa-
per gives three Las Vegas algorithms for this problem. Two of the algorithms
incrementally build the trapezoidal diagram of S (defined below), adding line
segments in random order. As a byproduct, the intersecting pairs of S are
found. The algorithms require O(A + n log n) expected time; one requires ex-
pected O(A+n log n) space, and the other requires O(n+A) space in the worst
case. Mulmuley [35] has independently found a similar algorithm, with the same
time bound and O(n + A) worst-case space bound. Another algorithm given
here builds on these algorithms, and requires the same time but O(n) space
in the worst case. Reif and Sen [38] applied randomization to obtain parallel
algorithms for related problems.

The trapezoidal diagram (or “vertical visibility map”), denoted T (S), is
defined as follows: for every point p that is either an endpoint of a segment
in S, or an intersection point of two segments in S, extend a vertical segment
from p to the first segment of S above p, and to the first segment of S below
p. If no such segment is “visible” to p above it, then extend a vertical ray
above p, and similarly below. The resulting vertical segments, together with
the segments in S, form a subdivision of the plane into simple regions that are
generally trapezoids. We call this subdivision the trapezoidal diagram. (We will
call these regions trapezoids even though some are only degenerately so, and we
may also call them cells.)

Convex hulls. We give a Las Vegas algorithm for computing the convex hull
of n points in E3. The algorithm requires O(n log A) expected time for any set
of points in E3, where A is the number of points of S on the surface of the hull.
Kirkpatrick and Seidel obtained a deterministic algorithm for planar convex
hulls with the same time bound [31]. We also give a Las Vegas incremental
algorithm requiring O(n log n) expected time for d = 3 and O(nbd/2c) expected
time for d > 3. This improves known results for odd dimensions [36, 40, 41,
20]. For independently identically distributed points, the algorithm requires
O(n)

∑

1≤r≤n f(r)/r2 expected time, where f(r) is the expected size of the
convex hull of r such points. (Here f(r) must be nondecreasing.) The algorithm
is not complicated.

Spherical intersections and diametral pairs. We give a Las Vegas algo-
rithm for determining the intersection of a set of unit balls in E3, the problem of
spherical intersection. This problem arises in the computation of the diameter

of a point set in E3. For a set S of n points, the diameter of S is the great-
est distance between two points in S. We give a randomized reduction from
the diameter problem to the spherical intersection problem, resulting in a Las
Vegas algorithm for the diameter requiring O(n log n) expected time. The best
algorithms previously known for this problem have worst-case time bounds no
better than O(n

√
n log n)[2].

Tight bounds for (≤k)-sets. Let S ⊂ Ed contain n points. A set S′ ⊂ S
with |S′| = j is a j-set of S if there is a hyperplane that separates S ′ from the
rest of S. A j-set is a (≤k)-set if j ≤ k. Let gk(S) be the number of (≤k)-sets,
and let gk,d(n) be the maximum value of gk(S) over all n-point sets S ⊂ Ed.
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This paper shows that

gk,d(n) = Θ(nbd/2ckdd/2e),

as n/k → ∞, for fixed d. The proof technique for the combinatorial bound
can also be applied to give (≤k)-set bounds for independently identically dis-
tributed points. For example, if the convex hull of such a set of points has f(n)
expected facets, then the expected number of (≤k)-sets is O(kdf(n/k)). The
proof technique employed for the improved bounds is an instance of a “prob-
abilistic method” [24]. The (≤k)-set bounds are a corollary of more general
results that are intimately related with the probabilistic results for the com-
plexity analysis of the our algorithms.

As a byproduct of our techniques, we give an alternative derivation of a
bound for the complexity of higher order Voronoi diagrams.

The concept of a k-set is a generalization of the concept of a convex hull
facet, which can be viewed as a d-set. The new bound is a generalization of the
known upper bound O(nbd/2c) for the number of facets of a convex polytope
with n vertices. Indeed, the new bound follows from this polytope upper bound.
Our bound is within a small constant factor of the tight bounds known for the
plane [25, 3, 42], and it improves previous results for d = 3 [18, 8, 12]; apparently
no interesting bounds were known before for higher dimensions. The proof of
the bound is also considerably simpler than those given for the earlier, weaker
bounds.

Improved bounds for range reporting. The halfspace range reporting
problem is this: for a set S of n points, build a data structure so that given
some query halfspace, the points of S in the halfspace can be reported quickly.
The new bound for (≤k)-sets is applied in this paper to sharpen the analysis of
the algorithm of [8] for halfspace range reporting. It is also used to analyze two
new algorithms for that problem. One algorithm is shown to require expected
O(nbd/2c+ε) preprocessing time, and in the worst case O(nbd/2c+ε) storage. The
resulting query time is O(A + log n), where A is the size of the answer to the
query. These resource bounds apply for any fixed ε > 0, and the constant factors
in the bounds depend on d and ε. Another algorithm requires O(n) storage,
O(n log n) expected preprocessing time, and allows queries to be answered in
O(A + n1+ε−γ) time, where γ = 1/(1 + (d − 1)bd/2c). The algorithm is a
variant of Haussler and Welzl’s [28]. Their query time is O(n1+ε−γ′

), where
γ′ = 1/(1 + d(d− 1)). (This is independent of the answer size, however.)

These results do not improve the algorithm of [7] for halfplane queries; that
algorithm requires O(n) storage, O(n log n) preprocessing, and O(A + log n)
query time. See also [43, 9] for recent related results.

1.2 Outline of the paper

The remainder of this section gives an informal discussion of the ideas in this
paper. The next section gives a description of the formal framework used in the
theorems, and the main lemma for the rest of the paper. This lemma is then
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applied in §3 to give a general theorem that implies the asymptotically tight
bound for (≤k)-sets. We also prove a general theorem for probabilistic divide-
and-conquer in §3, and a general result on randomized incremental construction
of geometric structures. In §4 we apply these results to trapezoidal diagrams,
convex hulls, spherical intersections and diameter, and halfspace range queries.
The final section gives some concluding remarks.

1.3 The ideas

This section gives a low-rigor general discussion of the ideas in this paper. These
ideas begin with some observations about random samples of point sets, and the
information that we can get from such samples.

Random samples. Suppose S is a set of points in the plane. Suppose
R ⊂ S of size r is chosen at random, with all subsets of size r equally likely. Let
e be an edge of the convex hull of R, and let l be the straight line containing e.
The points in the halfplane bounded by l, and not containing R, will be said to
be beyond the edge e. Then with probability 1−1/nΩ(1), for every edge e of the
convex hull of R, the number of points of S that are beyond e is O(log r)n/r.
That is, with high probability the convex hull of a random subset splits a point
set in small pieces. Intuitively, the fact that an edge e has no points of the
random sample R beyond it is good evidence that e has few points of S beyond
it. This kind of tail estimate has been the basis of several previous applications
of random sampling to computational geometry [12, 28].

In addition to the tail estimate, another fact holds for R and S: let Se be the
set of points in S that are beyond e, and let Z be the set of edges of the convex
hull of R. Then the expected value of the

∑

e∈Z |Se| is O(n). In contrast, the tail
estimate says only that

∑

e∈Z |Se| is O(n log r). (This is with high probability,
though.) This observation is a key new idea in this paper. Moreover,

∑

e∈Z |Se|
behaves roughly as a sum of Poisson random variables, so that

∑

e∈Z |Se|c is
(n/r)cO(r).

Why is this kind of bound useful in computing convex hulls? One approach is
to take a large random subset R ⊂ S, recursively compute the convex hull of R,
and then determine the result of adding the remaining points S \ R. Roughly
speaking, the changes owing to the remaining points can be expected to be
“local,” and require a small amount of work per point. Indeed, for a given point
p ∈ S \R, the number of such changes is proportional to the number of edges of
the hull of R that p is beyond. The total of these changes is therefore expected
O(n), as in the above discussion.

Instead of algorithms for convex hulls of point sets, we will describe algo-
rithms for determining the intersection of a set of halfspaces. This problem is
linear-time equivalent to the convex hull problem via well-known duality map-
pings. The above average-case result translates as follows to halfplane intersec-
tions: suppose S is a set of n halfplanes, and R ⊂ S is a random subset of S of
size r. Let Se denote the set of halfplanes in S that do not contain line segment
e. Then the expected value of

∑

e∈Z |Se| is O(n), where Z is the set of edges
bounding the intersection of the halfplanes in R. Intuitively, because all the
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halfspaces of R contain e, it is likely that most of the halfspaces of S do as well.
Randomized incremental construction. Similar observations are also

useful in applying divide-and-conquer to other intersection problems, such as
determining the number of intersecting pairs in a set of n line segments in the
plane, or finding the intersection of a set of unit balls in E3. For these problems,
however, we will give a simple alternative to divide-and-conquer, a technique
we will call randomized incremental construction.

To motivate this technique, we give a way to speed up insertion sort. Recall
that insertion sort constructs a sorted list of values from an unsorted list by
building up the sorted list one value at a time; at each step, an item from the
unsorted list is put into its place in the sorted list. Each step of insertion sort is
time-consuming because a large proportion of the sorted list may be examined
at each step. One way to speed up the sorting is to remember, for each value not
yet inserted, its location in the current sorted list, and conversely to keep a list
of all uninserted values that go in a particular location in the current sorted list.
Inserting a number in the sorted list now is easy; if c goes between a and b on
the sorted list, we use our stored information to put it there; we must also look
at the list of uninserted values between a and b, and decide for each uninserted
value in the list whether that value goes between a and c, or between c and b.

This “sped up” insertion sort is just a version of quicksort[30]. The time
required for insertion is now dominated by the time for the partitioning step;
this time is proportional to the number of uninserted values between a and b,
when we insert c between them. Suppose we insert numbers in random order.
Then at step r, the inserted values will be fairly evenly distributed among
the whole set, so the number of values to partition will be about n/r on the
average. The whole sorting process then takes expected time proportional to
n

∑

1≤r≤n 1/r = O(n log n).
Our technique of randomized incremental construction is a similar transfor-

mation from an “insertion” like algorithm to a “quick” one. For finding the
convex polygon that is the intersection of a set S of halfplanes, we determine
the polygon incrementally, randomly choosing a halfplane and slicing off the
portion of the current polygon that is not contained in that halfplane. As with
insertion sort, this technique is slow if we just examine the edges of the current
polygon to determine which must be removed; instead, we remember for each
edge those uninserted halfplanes that do not contain it. The work of inserting a
halfplane is now dominated by the work in updating this edge-halfplane conflict

information.
When we insert halfplanes in random order, the expected time required to

add a halfplane is O(n/r): at each step, the set R of inserted halfplanes is a
random subset of S, so that the facts about random subsets discussed above
can be applied. The algorithm requires optimal O(n log n) expected time.

Bounding (≤k)-sets. For the combinatorial problem of bounding the num-
ber of (≤k)-sets, it is helpful to use a kind of converse to the above relation
between the convex hulls of point sets. Let S ⊂ E2 and let R be a random
subset of S of size r. Consider two points a, b ∈ S; they define some line l,
that has S′ ⊂ S on one side of it. With probability roughly (r/n)2, a and b
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will be in R. If no points of S′ are chosen for R, a and b will be vertices of the
convex hull of R. If |S′| < n/r, this will occur will probability at least about
(1− |S′|/n)r ≈ 1/e. That is, with probability proportional to (r/n)2, the pair
of points a and b with |S′| < n/r contribute an edge to the hull of R. However,
the convex hull of R has at most r edges, so if z is the number of such pairs of
points, we know C(r/n)2z ≤ r, for a constant C, so z ≤ O(n)n/r. Put another
way, if k = n/r, the number of pairs of points of S with k or fewer on one side
is O(nk). The number of such pairs is roughly the same as the number of (≤k)-
sets, so we’ve bounded that quantity. In short, the bound on the complexity
of the convex hull of the random subset R of size n/k implies a bound on the
number of (≤k)-sets of S.

2 The formal framework and main lemma

The ideas in this paper can be applied to a variety of geometric structures. To
aid and to show this generality, a formal and abstract framework for geometric
computations is useful. This framework is similar to that in [12].

Let S be a set of n subsets of Ed; the elements of S will also be called objects.

The set S will be the input to a geometric computation, and so could be a set
of points (singleton sets), line segments in the plane, halfspaces, or balls. Let
F be a set of subsets of Ed, which we will term ranges, as in range query, or
regions.

In applications, the ranges will be defined by the objects in some way. When
computing convex hulls of points in the plane, the objects are points, and the
ranges are halfplanes, so the ranges defined by the objects are those open half-
planes that are bounded by lines through pairs of the points. The notion of
“defined” is formalized as follows: for integer b, let S(b) be the collection of
subsets of S with b or fewer elements, and let δ be a relation between F and
S(b). A range F ∈ F is defined by X ∈ S(b) if FδX , that is, if the δ relation
holds between X and F , so the set of ranges FS defined by the objects in S is

FS = {F ∈ F | FδX, X ∈ S(b)}.

In problems of construction, the desired computation is this: determine all
ranges F ∈ FS such that F ∩ s is empty for all objects s ∈ S. For convex hulls,
this is the set of all open halfplanes in FS that contain none of the input points.
For Voronoi diagrams in the plane, the ranges are open disks or halfspaces, the
objects are points (singletons), and the δ relation has FδX for X ∈ S(3) when
F is the open disk bounded by the circle through the points in X , and FδX for
X ∈ S(2) when F is an open halfspace bounded by the line though the points
in X . The empty members of FS are Delaunay disks or empty halfspaces. For
trapezoidal diagrams of line segments in the plane, the objects are line segments,
the ranges are open “trapezoids,” and the parameter b is four. The relation δ
is defined as follows: FδX for X ∈ S(4), when F is a (generalized) trapezoid in
T (X).
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While the desired ranges in construction problems have no intersections with
S, it also will be useful to consider ranges that do meet objects in S. For F ∈ F
and R ⊆ S, let F ∧R denote the members of R that have nonempty intersection
with F . Similarly, for s ∈ S, let s∧F denote the members of F having nonempty
intersection with s. Let |F ∧R| denote the number of objects in F ∧R, and let
|F | denote |F ∧ S|. For a given integer j, let F j

S denote the set of F ∈ F with
|F | = j. In construction problems, the set F0

S is desired. Note that with S and

F as for convex hulls, as mentioned above, the set F j
S is closely related to the

set of j-sets of S, and |F j
S | is the number of such sets.

For R ⊂ S, the sets FR and F j
R are defined analogously: FR is the collection

of all ranges F such that FδX for some X ∈ R(b), and F ∈ F j
R if |F ∧ R| = j.

Since we are mainly interested in F0
R, for R ⊂ S, we will assume that if FδX

for X ∈ S(b) then the set F ∧X is empty.
Ranges in FS are defined by b or fewer elements of S. For a given F ∈ FS ,

let iF denote the size of a smallest set defining F . That is, such a set X ∈ S(b)

has FδX , and |X | is no larger than for any such set. For each F ∈ FS, pick
some such X with FδX and |X | = iF , and call it XF .

When there is only one such possible XF for each F ∈ FS , we say that δ is
functional. (Most of the theorems hold if the number of minimal X with FδX
is O(1), not exactly 1.) For R ⊂ S we have F ∈ FR if and only if XF ⊂ R. In
general, the δ relation is functional when the input S is nondegenerate.

It will also be convenient here to define Tc(R) as

∑

F∈F0

R

(|F |
c

)

,

so that T0(R) = |F0
R| and T1(R) =

∑

F∈F 0

R
|F |. For integer r, let Tc(r) denote

the expected value ETc(R) for random R ⊂ S of size r, with all subsets of size
r equally likely.

With this machinery, here is the main lemma.

Lemma 2.1 Let R ⊂ S be a random subset of size r, and c ≥ 0. Then

∑

F∈FS

(|F |
c

)(

n− iF − |F |
r − iF − c

)

≤
(

n

r

)

E|Fc
R|,

with equality if δ is functional. Also

∑

F∈FS

(|F |
c

)(

n− b− |F |
r − b− c

)

≤
(

n

r

)

E|Fc
R|.

Proof. For F ∈ FS , let IF be the indicator function for the event F ∈ F c
R,

so IF = 1 when F ∈ Fc
R and 0 otherwise. Then |Fc

R| =
∑

F∈FS
IF , so E|Fc

R| is

E[
∑

F∈FS

IF ] =
∑

F∈FS

EIF =
∑

F∈FS

Prob{F ∈ Fc
R}

≥
∑

F∈FS

(|F |
c

)(

n− iF − |F |
r − iF − c

)/(

n

r

)
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The inequality here follows from the observation that for F ∈ FS , F ∈ Fc
R

if |F ∧ R| = c and XF ⊂ R. The number of subsets of size r that satisfy
these conditions, divided by the total number of subsets of that size, gives
the probability of this event. The number of such subsets is

(

|F |
c

)(

n−iF −|F |
r−iF −c

)

,
choosing c elements of R from among those meeting F , and choosing r− iF − c
elements of R from among the n− iF − |F | elements of S that neither meet F
nor are in XF . When δ is functional, F ∈ Fc

R only if XF ⊂ R and |F ∧ R| = c,
so the above holds with equality.

The second inequality of the lemma statement follows from
(

n−b−|F |
r−b−c

)

≤
(

n−iF −|F |
r−iF −c

)

for iF ≤ b (and for the relevant values of n, r, c, and |F |).

3 The probabilistic theorems

3.1 Improved bounds for (≤k)-sets

Rather than prove an upper bound for (≤k)-sets only, we prove a much more
general result, from which the (≤k)-set bound will follow as a corollary.

Theorem 3.1 With the notation of §2, for k > 1

∑

0≤j≤k

|Fj
S | ≤ 4kbT0(bn/kc)(1 + O(k/n)),

as k/n→ 0.

Proof. Let R ⊂ S be a random subset of size r = bn/kc, with k > 1. From
Lemma 2.1 with c = 0, we know that T0(r) is

E|F0
R| ≥

∑

j≥0

(

n− b− j

r − b

)

|Fj
S |

/(

n

r

)

≥
∑

0≤j≤k

(

n− b− j

r − b

)

|Fj
S |

/(

n

r

)

≥
∑

0≤j≤k

|Fj
S |/(4kb)(1 + O(k/n)).

The last inequality is easily proven using Stirling’s formula. (Hint: reduce to
within 1 + O(k/n) of

1

kb

(

1 +
kr

n(n− k − r)

)n−k−r (

1− k

n

)r
(

1− r

n

)k

using Stirling’s formula, then observe that the product of the middle two terms
is 1 + O(k/n) and the last term is bounded below by 1/4.)

The following theorem will be of particular interest in the applications in
the next section.
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Theorem 3.2 With the notation of §2,

|F1
S | ≤ ebT0(bbn/(b + 1)c)(1 + O(1/b) + O(b/n)),

and

|F2
S | ≤ (eb/2)2T0(bbn/(b + 2)c)(1 + O(1/b) + O(b/n)).

Proof. Let R ⊂ S be a random subset of size r = bbn/(b + 1)c. From
Lemma 2.1 with c = 0,

E|F0
R| ≥

∑

j≥0

(

n− b− j

r − b

)

|Fj
S |

/(

n

r

)

≥
(

n− b− 1

r − b

)

|F1
S |

/(

n

r

)

,

and so

|F1
S | ≤ E|F0

R|
n− b

n− r

(

n

b

)/(

r

b

)

.

The first bound of the theorem readily follows, and the second bound is similarly
proven.

Theorem 3.1 gives a bound on the quantity ĝk,d(n), defined as follows: sup-
pose S ⊂ Ed is a set of n points, F is the set of halfspaces in Ed, and FS is
the set of halfspaces bounded by hyperplanes that are affine hulls of points in
S. Then ĝk,d(n) is the maximum, over all such S, of

∑

0≤j≤k |F
j
S |. A member

of F j
S will be called a j-facet of S.

Corollary 3.3

gk,d(n) = O(nbd/2ckdd/2e),

as n/k →∞.

Proof. It is easy to show, using the results of [20, §3.2], that gk,d(n) =
O(ĝk,d(n)).

We can assume that S is nondegenerate, so that no d+1 points of S are on a
common hyperplane. This is no loss of generality, as gk(S) attains its maximum
when S is nondegenerate [20]. To apply the theorem to ĝk,d(n), S is a set of
points in Ed (or more precisely, a collection of singleton sets of points of Ed).
The set of ranges F is the set of open halfspaces of Ed, and with b = d, the
δ relation is defined as follows: for X ∈ S(b), let FδX when |X | = b and F
is bounded by the affine hull of the points in X . The upper bound for ĝk,d(n)
follows, using the upper bound O(rbd/2c) for |F0

R|, here the number of facets of
a polytope with r vertices [20, §6.2.4]

Lemma 3.4

gk,d(n) = Ω(nbd/2ckdd/2e),

as n/k →∞.
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Proof. Omitted. Cyclic polytopes[20] realize the bound, as can be shown
using the techniques of the theorem, or constructively [19].

Although bounds on |F j
S |, for given j, seem to be difficult to obtain, the

following result is of interest.

Theorem 3.5 Let S ⊂ E3 be a set of n points that are the vertices of a convex

polytope. Suppose S is nondegenerate, that is, has no four points coplanar.

Then S has 2(j + 1)(n− j − 2) j-facets.

Using well-known relations between Voronoi diagrams in the plane and con-
vex hulls of point sets in E3, this result gives a sharp bound on the number of
vertices of order j Voronoi diagrams. This is an alternate proof of the bound of
D. T. Lee for this quantity. This result is stated as Corollary 13.35 of [20], and
given yet another proof.

Proof. Suppose R ⊂ S is random, of size r with 4 ≤ r ≤ n. Since S forms
the vertices of a convex polytope, so does R ⊂ S. Since S is nondegenerate, so
is R. Therefore |F0

R|, the number of facets of the convex hull of R, is 2(r − 2)
[20, Theorem 6.11]. With the nondegeneracy condition, the δ relation here is
functional, and by Lemma 2.1 we have for 4 ≤ r ≤ n,

∑

j≥0

(

n− j − 3

r − 3

)

|Fj
S| =

(

n

r

)

E|F0
R| = 2(r − 2)

(

n

r

)

.

The same expression holds for r = 3, since any set of 3 points of S defines two
j-facets. The values |F j

S| = 2(j + 1)(n− j − 2), for 0 ≤ j ≤ n− 3, satisfy these
equations, since

∑

0≤j≤n−3

(

n− j − 3

r − 3

)

(n− j − 2)2(j + 1)

= 2(r − 2)
∑

0≤j≤n−3

(

n− j − 2

r − 2

)(

j + 1

1

)

= 2(r − 2)

(

n

r

)

,

using well-known binomial coefficient identities (see e.g. [26]). The matrix
associated with this linear system has a determinant with absolute value 1, using
expansion by minors, and using the facts that

(

n−j−3
r−3

)

= 1 for r = n − j ≥ 0,
(

n−j−3
r−3

)

= 0 for r > n− j ≥ 0. Thus the given solution is unique.
In the nondegenerate case but with S not necessarily the vertex set of a

polytope, we can express |F j
S | as

|Fj
S | =

∑

3≤r≤n

(

r − 3

n− 3− j

)(

n

r

)

(−1)j+r+nT0(r).

If only this implied something interesting about |F j
S|!

11



3.2 Probabilistic divide-and-conquer

This section gives results implying that random sampling can be used effectively
for a divide-and-conquer approach to geometric problems. A corollary is also
given that combines the results of [12] with the theorem.

To state the main theorem needed, some terminology and notation in addi-
tion to that in §2 is useful:

For nonnegative integers k and c, let kc denote the “falling power” c!
(

k
c

)

.
Recall that a function W from the reals to the reals is concave when

W (αx + (1− α)y) ≥ αW (x) + (1− α)W (y),

for all x, y and α with 0 ≤ α ≤ 1. (That is, when these values are defined.) Note
that xβ is a concave function of x, for 0 ≤ β ≤ 1, as is the logarithm function.

For R ⊂ S, nonnegative integer c, and function W from the nonnegative
reals to the nonnegative reals, let TW,c(R) denote

∑

F∈F0

R

W

((|F |
c

))

.

That is, TW,c(R) is the total work done for F0
R when W

(

(

|F |
c

)

)

work is done

for the |F | objects of S meeting F ∈ F0
R. The earlier notation Tc(R) is the case

W (j) = j. Finally, let
τ0(r) = max

1≤z≤r
T0(z).

Theorem 3.6 With the terminology of §2 and above, suppose the relation δ is

functional, the function W is concave, and c is a nonnegative integer. Suppose

R is a random subset of S of size r. Then

ETW,c(R) ≤W

(

(n− r + c)c

(r − b)c
Kc,b

)

E|F0
R|,

where Kc,b = E|Fc
R|/E|F0

R|.

Proof. Let IF be the indicator function for the event F ∈ F0
R, so IF = 1

when F ∈ F0
R and 0 otherwise. Then ETW,c(R) is

E
[

∑

F∈FS

IF W
(

(

|F |
c

)

)

]

=
∑

F∈FS

EIF W
(

(

|F |
c

)

)

=
∑

F∈FS

Prob{F ∈ F0
R}W

(

(

|F |
c

)

)

≤ E|F0
R|W

[

∑

F∈FS

Prob{F ∈ F0
R}

(

|F |
c

)

/E|F0
R|

]

,

12



using the concavity of W and the fact that E|F0
R| =

∑

F∈FS
Prob{F ∈ F0

R}.
Now using Lemma 2.1 and the assumption that δ is functional, the sum in

the last expression above is bounded:

∑

F∈FS

Prob{F ∈ F0
R}

(|F |
c

)

=
∑

F∈FS

(|F |
c

)(

n− iF − |F |
r − iF

)/(

n

r

)

≤ (n− r + c)c

(r − b)c

∑

F∈FS

(|F |
c

)(

n− iF − |F |
r − iF − c

)/(

n

r

)

= E|Fc
R|

(n− r + c)c

(r − b)c
.

The theorem follows.
In many applications, we are only interested in the cases c = 1 or c = 2,

with W (j) = j.

Theorem 3.7 With the terminology of §2 and above, suppose the relation δ is

functional. Then

T1(r) ≤
n− r + 1

r − b
τ0(r)eb(1 + O(1/b) + O(b/r))

and

T2(r) ≤
(n− r + 2)2

(r − b)2
τ0(r)(eb/2)2(1 + O(1/b) + O(b/r)),

as b, r →∞.

In some cases, the constant factor for T1(r) is exactly b.
Proof. The result follows from Theorem 3.6; for the c = 1 case, we need to

bound E|F1
R| above by τ0(r)eb(1 + O(1/b) + O(b/r)). From Theorem 3.2, we

have
|F1

R| ≤ T0(bbr/(b + 1)c)eb(1 + O(1/b) + O(b/r)).

Note that T0(bbr/(b + 1)c) here refers to random subsets of R; there is no
ambiguity, since random subsets of R are random subsets of S. The result
follows by definition of τ0(r). The c = 2 case follows similarly.

As noted above, the function xβ is concave in x for 0 ≤ β ≤ 1, as is log(1+x).
Thus when jβ work is done for a range of F0

R meeting j objects of S, the average
work per range of F0

R is O(n/r)β , and similarly if log(1 + j) work is done, the
average work is O(log(n/r)).

The following is a combination of the above theorem and Corollary 4.2 of
[12].

Corollary 3.8 With the terminology of §2 and above, suppose the relation δ is

functional. Suppose |FS | ≤ K
(

n
b

)

for some constant K. Then for any q ≥ 0,

13



there exists zr,q = O(b log r) + q + ln K as r →∞ such that with probability

3/4− e−q, both of these conditions hold:

∑

F∈F0

R

|F | ≤ O(n/r)τ0(r)

and

max
F∈F0

R

|F | ≤ zr,qn/r.

Proof. For the first condition, we use Theorem 3.7 with c = 1. By Markov’s
inequality, the probability that T1(R) exceeds four times its mean is no more
than 1/4. For the second condition, we use Corollary 4.2 of [12], which implies
that the probability that the second condition fails is at most e−q. For com-
pleteness, we prove the second bound here: suppose Pk is the probability that
maxF∈F0

R
|F | ≥ k. Then

Pk = Prob















∨

F∈FS

|F |≥k

F ∈ F0
R















≤
∑

F∈FS

|F |≥k

Prob{F ∈ F0
R}.

As in Lemma 2.1 with c = 0,

Prob{F ∈ F0
R}

(

n

r

)

≤
(

n− |F | − b

r − b

)

≤
(

n− k − b

r − b

)

for |F | ≥ k, so Pk

(

n
r

)

is no more than

∑

F∈FS

(

n− k − b

r − b

)

≤ K

(

n

b

)(

n− k − b

r − b

)

≤ K

(

r

b

)(

n− k

r

)

For k = dzn/re, we use Stirling’s approximation, the bound
(

a
b

)

≤ (ae/b)b, and
the bound 1 + x ≤ ex to obtain Pk ≤ K(er)b

√
ze−z, which implies that an

appropriate value zr,q can be chosen to satisfy the conditions of the corollary.

3.3 Randomized incremental construction

In this section, we prove an expected-time bound for randomized incremental
construction, within the formal framework of §2. The construction problem
associated with an instance of this framework is to find F0

S given an input set
S.

As discussed in §1.3, randomized incremental construction solves this prob-
lem as follows: the objects in S are added one by one in random order to a

14



set R. As these objects are added, the set of regions F0
R is maintained, and

updated as each object is added. To make this algorithm faster, a conflict graph

is maintained between the objects in S \ R and the regions in F0
R. This graph

has an edge between each object and region that have nonempty intersection,
so that the object prevents the region from being in F0

S. When an object s is
added to R, the regions adjacent to s in the conflict graph are deleted from F 0

R,
and new regions are added that result from the presence of s. The following
theorem gives a time bound for instances of this general algorithm in which an
update condition holds. The update condition is this: the time to add a point s
to R, and to update F0

R and the conflict graph, is linearly proportional to the
number of objects that conflict with regions that conflict with s. That is, the
work is proportional to

∑

F∈s∧F0

R
|F |.

Plainly, the update time is at least as long as this. In many instances, this
linear time suffices. Put another way, the update condition says that the work
performed at a step is linear in the number of conflict-graph edges deleted at
that step. Since no work is done for an edge except when creating or deleting
it, with the update condition the total work is proportional to the number of
edges created, which is also the number of edges deleted.

Theorem 3.9 Randomized incremental construction. In an instance of

the general incremental construction algorithm, suppose the update condition

holds and δ is functional. Then the expected time required by the instance is

O(n)
∑

1≤r≤n τ0(r)/r2.

Proof. It is enough to show that the expected time required to add object s ∈
S at step r+1 is O(τ0(r))(n−r)/r2 . This fact is a consequence of Theorem 3.7.
By the update condition, the time required is proportional to

∑

F∈FS

|F |IF ,

where IF = 1 when both F is in F0
R and F meets s, and IF = 0 otherwise. Here

R is the current (random) set of r objects.
The expected value of this quantity is

∑

F∈FS

|F |Prob{F ∈ F0
R, s ∈ F ∧ S},

or
∑

F∈FS

|F |2
n− r

Prob{F ∈ F0
R} = T2(r)/(n− r),

from the proof of Theorem 3.6. By Theorem 3.7, this quantity is on the order
of O(τ0(r))(n − r)/r2.

This completes the proof. Here is another proof: by the remarks above,
we may bound the work of the algorithm by bounding the number of conflict
graph edges created in the course of the algorithm. A range F ∈ FS contributes
|F | edges to the number created at step r + 1 if F /∈ F0

R but F ∈ F0
R′ , where
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R′ = R∪ {s}. This occurs if and only if |F ∧R′| = 0, XF ⊂ R′, and s ∈ XF , so
the expected number of edges created is

∑

F∈FS

|F |Prob{F ∈ F0
R′ , s ∈ XF }.

Since R′ is a random subset of S, s is a random element of R′. Given that
F ∈ F0

R′ , the probability that s ∈ XF is no more than b/(r + 1). Hence the
expected number of edges created is

∑

F∈FS

|F | b

r + 1
Prob{F ∈ F0

R′} = bET1(R)/(r + 1),

from the proof of Theorem 3.6. By Theorem 3.7 this is O(τ0(r))(n − r)/r2.

4 Algorithmic applications

4.1 Line segment intersections

In this section, three algorithms are given for the problem of constructing T (S).
All three require O(A+n log n) expected time. The first algorithm is an instance
of the randomized incremental construction technique. The second algorithm is
a refinement of the first, requiring O(n + A) space in the worst case. The third
algorithm requires only O(n) space in the worst case. (To be precise, the third
algorithm can only be said to compute line segment intersections and vertical
visibility information; it does not compute the complete trapezoidal diagram.)

For convenience of presentation, we assume that the line segments are non-
degenerate, so that no three intersect at the same point, and no endpoints or
intersection points are covertical (on the same vertical line). These conditions
can be simulated using appropriate small perturbations, so little loss of gener-
ality is implied. (Some loss is entailed, however: we might prefer a measure of
A that counts the number of intersection points, not the number of intersecting
pairs. We can go further in this direction than will be reported here.)

One important issue here is the representation of adjacency information for
trapezoidal diagrams. For the first algorithm, we will assume some limitations
on the adjacency information recorded for each trapezoid. We assume that a
trapezoid “knows” only its upper and lower bounding line segments, its corner
points, and the trapezoids with which it shares vertical boundaries. We will not
assume that a trapezoid knows all of the (possibly very many) trapezoids with
which it shares upper and lower bounding segments. (Such information is of
course readily obtained for any given diagram.) That is, the first algorithm will
not need to preserve such information as the diagram is built. For the second
and third algorithms, we assume that the diagram is represented as a planar
subdivision in one of the standard ways[34, 27].

For the first algorithm, the line segments are added in random order, one by
one, to a set R. The diagram T (R) is maintained as R grows. In addition, a
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conflict graph is maintained, as discussed in §3.3. Here the conflicts are between
line segments in S\R and the interiors of trapezoids in T (R). There is a conflict
between a segment and a trapezoid (interior) when they intersect. The conflict
graph can be represented by lists: for each segment s the set s∧F 0

R is maintained
as a list, and for each cell F of T (R), the set of conflicting segments F ∧ S is
maintained as a list. When adding a segment s, the cells that must be deleted
are found by examining s ∧ T (R). (Here we identify T (R) with the set of cells
in it.) These cells are then split up by s, each into at most four pieces. Some of
these pieces will merge together for new cells, since s will reduce the visibility
of some points, and so shrink some vertical bounding edges.

The edges in the conflict graph to the new cells that result from s can be
found by examining the lists F ∧ S, for the cells F ∈ s ∧ T (R). To satisfy
the update condition of Theorem 3.9, we need to show that these new edges
can be found in time linear in the total of the lengths of the lists F ∧ S for
F ∈ s ∧ T (R). The only nontrivial problem here is that when some pieces
of deleted cells merge to make a new cell F , we must have a given segment
conflicting with F represented only once in the list for F ∧S. We can maintain
this nonredundancy as follows. (We are sketchy here since the next algorithm
described is superior in theory and probably in practice.) Maintain the conflict
lists for segments in left-to-right order of intersection. Use this order for s to
merge pieces of deleted cells in left-to-right order. Determine the conflicts for
each piece. When constructing a conflict list for a new cell, examine the conflicts
for a given piece, and for segment s′ conflicting with that piece, walk from the
current piece to the remaining ones that will merge for the new cell, deleting s′

from the conflicts for those pieces. (We assume that appropriate cross-pointers
between lists are maintained.)

We are ready to apply Theorem 3.9 to the analysis of this algorithm. To
estimate τ0(r), we have the following theorem. We use |T (R)| to refer to the
number of cells of T (R).

Lemma 4.1 Suppose S is a set of n nondegenerate line segments in the plane,

with A intersections. Let R be a random subset of S of size r. The number of

cells in T (R) is no more than O(r +A′), where A′ is the number of intersecting

pairs of segments of R. The expected value of A′ is Ar(r−1)/n(n−1). Therefore

E|T (R)| = O(r + Ar2/n2).

Proof. The first statement is an obvious consequence of the fact that T (R)
is a planar map.

Let ZS be the set of intersection points of S, and ZR the set of intersection
points of R. For z ∈ ZS , let Iz = 1 when z ∈ ZR, and 0 otherwise. Then
A′ =

∑

z∈ZS
Iz , so

EA′ =
∑

z∈ZS

EIz =
∑

z∈ZS

Prob{z ∈ ZR}

= A

(

r

2

)

/

(

n

2

)

,
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since z ∈ ZR if and only if the two line segments that meet at z are both in R.

Theorem 4.2 For a set S of n line segments having A intersecting pairs, the

trapezoidal diagram T (S) can be computed in O(A + n log n) expected time.

Proof. As discussed in §2, T (S) corresponds to F0
S, with b = 4 and δ defined

so that FδX for X ∈ S(4) when F is a cell in T (X). The nondegeneracy
conditions imply that δ is functional. From the lemma above, τ0(r) = O(r +
Ar2/n2), and with the update condition satisfied we have that the expected
time required by the algorithm is proportional to

n
∑

1≤r≤n

O(r + Ar2/n2)/r2 = O(A + n log n).

The space bound for this algorithm is certainly O(n log n+A) on the average.
Moreover, at step r, the conflict graph has O(n+Ar/n) edges. However, a simple
example shows that the conflict graph can grow to Ω(n log log n) edges over the
course of the algorithm, so we do not have expected space proportional to the
O(n + A) output size. However, we can achieve O(n + A) worst-case space by
a simple change as in Mulmuley’s algorithm [35] and similar to that described
in [16] (and below) for convex hulls. This change is to store only part of the
conflict graph, only the conflicts between line segment endpoints and trapezoids.
That is, for each cell there is a list of line segments whose left endpoints are
in the cell. When adding a segment, we need to traverse the current diagram
along the segment to determine all of the cells conflicting with that segment.
Such endpoint conflicts are readily updated, and plainly only O(n + A) storage
is necessary.

Unlike the first algorithm, we must prove a time bound for the traversal of
the diagram by a newly added segment s. Such a traversal would walk around
the boundaries of the cells that intersect s. A difficulty here is that the upper or
lower boundaries of a cell F may be split into many edges, when F shares those
boundaries with many cells. The following lemma shows that examining these
boundary edges is not expensive on the average. Call the portion of a cell’s
boundary that is contained in input line segments that cell’s segment boundary

(as opposed to the vertical bounding edges of the cell).

Lemma 4.3 The expected number of edges that bound trapezoids conflicting

with added segment s at step r is O(1 + Ar/n2).

From this lemma, we have a total expected time O(n + A) for determining
conflicts over the course of the algorithm.

Proof. By the nondegeneracy assumption, every trapezoid shares its vertical
boundaries with O(1) other trapezoids, so we are mainly concerned with edges
on segment boundaries. We bound, equivalently, the expected number of cell
corners that appear on a trapezoid’s segment boundary. We apply Theorem 3.7,

18



but using a set FS and defining relation δ that is different from that used above.
Here b = 6, and the region of interest defined by a set X ∈ S(6) consists of the
interior of a trapezoidal diagram cell defined by four or fewer of the segments
of X , together with a vertical edge with an endpoint on the cell’s segment
boundary. The other endpoint of the vertical edge is either the endpoint of a
line segment in X , or the intersection point of two segments in X . That is, F 0

S

consists of pairs of trapezoids Q and vertical edges e, where e is a boundary of
a trapezoid sharing an upper or lower boundary with Q. To prove the lemma,
we want to bound the expected number of ranges in F0

R at step r + 1 for which
the trapezoid of the range meets s. The expected value of this quantity is no
more than

∑

F∈FS

Prob{F ∈ F0
R, s ∈ F ∧ S},

or
∑

F∈FS

|F |
n− r

Prob{F ∈ F0
R} =

1

n− r

n− r

r
O(τ0(r))

by Theorems 3.7 and 3.6 and their proofs. The lemma follows, since |F 0
R| is no

more than twice the number of vertical edges in T (R); from Lemma 4.1 and
planarity of T (R), we have E|F0

R| = O(r + Ar2/n2), which also bounds τ0(r),
and so gives the lemma.

To do better still in the space bound, we use one the above algorithms as
a major step in a third algorithm. The third algorithm uses random sampling
of line segments to apply divide-and-conquer to the problem. The algorithm is
recursive, but has a recursion depth of only 2.

The idea is to find all intersecting pairs of S by finding all intersecting pairs
of F ∧ S, for F ∈ T (R). (Also including the intersecting pairs in R.) To show
that this approach is helpful, we use the following corollary.

Corollary 4.4 Suppose S is a set of n line segments in the plane, with A pairs

of these segments intersecting. Let R be a random subset of S of size r. There

exist constants Kmax and Ktot such that, with probability at most 1/4,

Ktot(n + Ar/n) ≤ T1(R) =
∑

F∈T (R)

|F |,

and with probability at most 1/n10,

Kmax(n/r) log n ≤ max
F∈T (R)

|F |.

Proof. The proof follows that of Corollary 3.8.
If the second inequality does not hold, the sample R will be said to be

“good.” We will use good samples for divide-and-conquer. Let N denote the
size of the top-level input set, and use n for the input size at the general step
of the recursion. The scheme of the algorithm is to find a good sample of size
r =
√

n, compute the sets F ∧S, and recur. The recursion stops when an input
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set has no more than
√

N segments; since the input size n is N at the top,
O(
√

N log N) at the next, and then O(N1/4 log3/2 N), the recursion depth is 2.
The key question here is: how can we find the sets F ∧ S using only O(n)

storage? Our algorithm employs two methods to do this; both methods begin
by choosing R at random. Method I then simply checks all segments in S \ R
with all cells in T (R), tallying up the values |F |, checking if R is a good sample.
When R is found not to be a good sample, another is chosen, repeating until a
good sample is found.

Method II also chooses a random sample R ⊂ S of size r, and builds T (R).
However, as in the second basic method above, while T (R) is built the locations
of the endpoints of S \ R are maintained. The sets F ∧ S are then found by
walking along each segment in S \ R, finding conflicts as in the second basic
algorithm. If at any time, either R is found not to be a good sample, or the
total number of conflicts found exceeds 2Ktotn, method II restarts with another
sample.

These two methods are run concurrently until one stops with a good sample.
The algorithm then recurs. (If method I succeeded, the sets F ∧S are generated
again for each F ∈ T (R) in turn.)

Before proving bounds for this algorithm, we make the following simple
observation.

Lemma 4.5 For X a nonnegative random variable and event B, we have E[X |B] ≤
EX/Prob{B}.

Proof. Easy.

Theorem 4.6 Suppose S is a set of N nondegenerate line segments in the

plane, with A pairs of these segments intersecting. The pairs of line segments

of S that intersect can be computed in O(N) space and O(A+N log N) expected

time.

Proof. The space bound is obvious. For the time bound, we first show
bounds for methods I and II to divide the problem. We will bound the work
for method I when A > n

√
n, and for method II when A ≤ n

√
n. (Here A

represents the number of intersecting pairs in the current subproblem.)
The expected time required by method I is O(A+nr), since the time needed

to check all segments against all F ∈ T (R) is proportional to n(r + A′), where
A′ is the number of intersection points of R. (The expected time O(A+n log n)
needed by the second algorithm to compute T (R) is dominated by O(A + nr),
remembering that r =

√
n.) From Lemma 4.1, EA′ = O(Ar2/n2) = O(A/n).

We must use, however, the expected value of A′, conditioned on R being a
good sample. By Lemma 4.5, the bound EA′ = O(A/n) still holds with this
condition. Therefore, method I requires O(nr + A) to check a given sample,
which is O(A) for A > nr. Since sample R is bad with probability no more than
1/n10, we have that the expected time for method I to find a good sample is
O(nr + A)(1 + 1/n10 + 1/n20 + . . .) = O(nr + A).
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The expected time for method II to construct T (R) is O(A + n log n); this
includes the work to maintain the locations of endpoints of S \ R. We need
to bound the time required to construct the sets F ∧ S by walking along the
segments of S \R. To do this, we use the same relation δ as in Lemma 4.3. The
work for F ∈ F0

R is |F |, so by Theorem 3.7, the total work to build the sets
F ∧S is O(n/r)τ0(r), or O(n/r)O(r+Ar2/n2) = O(n+Ar/n). For A ≤ nr, this
is O(n). Thus the expected work to find the sets F ∧ S, for any given random
subset R, is O(A + n log n).

If A ≤ nr, then by Lemma 4.4, with probability 3/4 the total
∑

F∈T (R) |F |
is no more than Ktot(n + Ar/n) ≤ 2Ktotn. Combining this with the condition
that R be a good sample, the probability that method II will need to restart
with a new sample is no more than P = 1/4 + 1/n10. By Lemma 4.5, the
expected time to construct the sets F ∧S, given that sample R does not require
method II to restart, is O(A + n log n)/(1−P ) = O(A + n logn). Thus method
II requires O(A + n logn)(1 + P + P 2 + . . .) = O(A + n log n) expected time.

Since we run methods I and II concurrently until one succeeds, the total
time to run them is no more than twice the minimum time of the two, and so
is O(A + n log n) for all values of A. Now a two-level induction completes the
proof of the theorem: the base case is obvious, and the work at the top level is

O(A + n log n) +
∑

F∈T (R)

AF + |F | log |F |

≤ O(A + n logn) + O(log n)
∑

F∈T (R)

|F |,

where AF is the number of intersections in cell F . Finally, the sum T1(R) above
is O(n) if method II succeeded, and its expected value is O(Ar/n) even when
conditioned on the success of method I, by Lemma 4.5. Since the induction has
only two levels, multiplication by constant factors at each level does not alter
the asymptotic bound, and so the theorem follows.

4.2 Convex hull algorithms

In this section, we give algorithms for computing the convex hull of a set of
sites in E3, or equivalently, of determining the intersection P(S) of a set S of
n closed halfspaces in E3. We assume that the halfspaces are nondegenerate,
so that no four intersect at a common point. We also extend these results to
higher dimensions.

To fit in our framework, we will use the open halfspaces H , the complements
of H ∈ S, and refer to this collection as S. The intersection P(S) is the set of
points not in ∪H∈SH.

One algorithm we give is randomized and incremental. As in §1.3, it adds
the halfspaces one by one in random order to a set R, maintaining P(R) as each
halfspace is added. To make the algorithm faster, some additional information is
used: we maintain a conflict graph, which is a bipartite graph on the halfspaces
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of S and the edges of P(R), with a graph edge between a halfspace H ∈ S and
an edge e ∈ P(R) when e is not contained in H . This graph can be represented
by linked “conflict lists” that give the sets e ∧ S for e ∈ P(R), and H ∧ P(R)
for H ∈ S \R, where we identify P(R) with its set of edges.

In the general step of the algorithm, a halfspace H is added to R, making
the new set R′ = R∪ {H}. At this step, the edges of P(R) that are retained in
P(R′) are those not in H ∧ P(R). Some edges in H ∧ P(R) have both vertices
not in H . Such edges can be discarded. The remaining edges in H ∧ P(R) are
cut by the bounding plane of H . A facet G of P(R) that is cut by the bounding
plane of H is incident to two such edges e1 and e2. Such a facet gives rise to a
new facet G′ of P(R′), bounded by edges not in H ∧ P(R), and by new edges
e′1 = e1 ∩ H , e′2 = e2 ∩ H , and e12, which is the intersection of G with the
bounding plane of H . The edge e12 is also incident to the face of P(R′) that is
the intersection of P(R) with the bounding plane of H .

To update the representation of P(R′) to reflect these changes, we must
find, for each edge e1 cut by the bounding plane of H , the faces F incident to
e1 and the edge e2 incident to F that is also cut. This is easily done by walking
around F from e1 to e2, staying outside of H , so that the edges traversed are
in LH . In this way, the polytope P(R′) and the changes in incidence relations
are obtainable in time proportional to the number of edges in LH .

It is easy to see that the halfspaces in the conflict lists for the three edges
e′1, e′2 and e12 are contained in the conflict lists of e1 and e2. (Any halfspace
that contains these two edges also contains their convex hull, which includes the
new edges.) These lists are searched to find the conflict lists for the three new
edges. The conflict lists of all new edges in P(R) are found in this way.

This is the entire algorithm, assuming appropriate initialization. A moment’s
thought shows that when adding a halfspace H ∈ S, the work performed is
proportional to the total number of halfspaces in the conflict lists of the edges
in the conflict list of H . By Theorem 3.9, we have

Theorem 4.7 Given a nondegenerate set S of n halfspaces in E3, the random-

ized incremental algorithm computes P(S) in O(n log n) expected time.

Proof. We apply Theorem 3.9 with b = 4; the objects are the halfspaces in S,
the ranges F are line segments in E3, and e is defined by a set X of halfspaces
if e is an edge of the intersection of the closed complements of the halfspaces in
X . As discussed above, the update condition holds, and τ0(r) = O(r).

We also have the following extension.

Theorem 4.8 Given a nondegenerate set S of n halfspaces in Ed, a randomized

incremental algorithm computes P(S) in O(nbd/2c) expected time.

Proof. The algorithm is similar to that above; we maintain P(R) as half-
spaces are added to R. The incidence graph of P(R) is maintained, as in the
beneath-beyond method[20], and the conflict lists of edges (one-dimensional
faces) are maintained. To find conflict lists for new edges (corresponding to
edge e12 above), we must find pairs of edges e1 and e2 on the same 2-face
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(polygonal region) and cut by the bounding hyperplane of an added halfspace.
To do this, put each edge cut by the bounding hyperplane into a list LG for
each incident 2-face G, and maintain a list of cut 2-faces. Having done this for
all conflicting edges, the desired pairs are those in the two-element lists LG for
cut 2-faces G.

The application of Theorem 3.9 is similar to that for the previous theorem,
with b = d + 1.

A linear-space variant. A simple example, where P(S) is the dual of
a cyclic polytope [20], shows that the above algorithm requires Ω(n log log n)
expected space. We next give a variant algorithm for E3 that requires O(n)
space in the worst case, with the same O(n log n) expected time bound.

The variant is as follows: rather than maintain the entire conflict graph, it
is enough to maintain, for each halfspace H not yet added, a single edge C(H)
with which it conflicts. When adding H , we can quickly determine all the edges
with which it conflicts, by searching the edges of P(R) starting at C(H). (Note
that the set of conflicting edges gives a connected subgraph of the 1-skeleton
of P(R).) By our nondegeneracy assumption, each vertex of the polytope is
incident to three edges, so this searching requires constant time per conflicting
edge.

This variant has a slightly different update problem: suppose a halfspace H
is to be added, after which edge e will no longer be present in the intersection. If
e = C(H ′) for some halfspace H ′, we must find some edge e′ in P(R′) that con-
flicts with H ′. To do this, we search the edges of P(R) starting at e, maintaining
the condition that the edges we examine conflict with H ′. At some point, we
find an edge that conflicts with H ′ and also either does not conflict with H ,
or is cut by the bounding plane of H . In the former case, we have an edge of
P(R′) that conflicts with H ′, and we can reset C(H ′). In the latter case, we are
led to an edge of P(R′) that is not in P(R), and that may conflict with H ′. If
the new edge conflicts, we are done. Otherwise, we continue searching the edges
that conflict with H ′. If we never find an edge of P(R′) that conflicts with H ′,
we may ignore H ′ in later processing. Otherwise, we have updated C(H ′), and
have done no more work than the original algorithm.

4.2.1 An output-sensitive algorithm

This section gives an output-sensitive algorithm for computing P(S). We as-
sume that a point p∗ in the intersection is known; such a point can be found in
linear time using linear programming[33, 13].

The main idea of the algorithm is to quickly filter out those halfspaces in
S that contain P(S) in their interiors. Such halfspaces are redundant, and
removing them gives a set of irredundant halfspaces S ′ with P(S) = P(S′).
Furthermore, if the descriptive complexity of P(S) is A, then there are certainly
no more than A halfspaces in S ′. (Dually, we are quickly removing points that
are inside the hull.)

The algorithm is based on an expected relation between the intersection
P(R) of random R ⊂ S, and the intersection P(S). Suppose P(R) is split up
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into simple pieces as follows: take some arbitrary (fixed) plane h, and cut each
face of P(R) into trapezoids using the translates of h that pass through the
vertices of the face. Decompose P(R) into a set of simple regions ∆(R), each
region consisting of the convex closure of p∗ with a trapezoid from the cutting
of the faces. For F ∈ ∆(R), the set F ∧ S corresponds to the set of halfspaces
of S that do not contain F entirely in their interiors, and |F | denotes |F ∧ S|.
The following lemma is a corollary of Theorem 3.7.

Lemma 4.9 The expected value of
∑

F∈∆(R) |F | is O(n).

Proof. The objects are open halfspaces, the complements of the input half-
spaces. The parameter b is five: one halfspace determines the face containing a
trapezoid, two more halfspaces determine the two edges on that face that deter-
mine the trapezoid, and two more determine the vertices of the trapezoid. The
ranges are polyhedra with p∗ as one vertex and up to five sides. Nondegeneracy
implies that δ is functional. Also τ0(r) = O(r): the trapezoidal subdivision of
the surface of P(R) forms a planar graph.

Note that P(S) consists of the union of the regions F ∩ P(S), over all F ∈
∆(R). The halfspaces of S that contribute to a nontrivial region F ∩ P(S) are
the complements of those in F ∧ S.

Since every irredundant halfspace determines a vertex of P(S), we need not
consider all the regions F ∈ ∆(R), only those that contain at least one vertex
of P(S). Call this set of regions ∆∗(R). Certainly ∆∗(R) contains at most A
regions. The following lemma is a corollary of Theorem 3.7.

Lemma 4.10 The expected value of
∑

F∈∆∗(R) |F | is O(n/r)A, for sample

size r.

Proof. As in the previous lemma, where the δ relation is defined only for
ranges that contain a vertex of P(S). Plainly τ0(r) ≤ A.

Now suppose the sample size r is at least A2. Then
∑

F∈∆∗(R) |F | is O(n/A)
on the average. This observation provides a fast means of filtering out redundant
halfspaces, making two assumptions: we can obtain an estimate of A, and we
have a fast means of determining ∆∗(R) and the sets F ∧ S for all F ∈ ∆∗(R).
We next consider these two problems.

The regions F ∈ ∆(R) and the corresponding F ∧ S can be readily ob-
tained in O(n log r) expected time using the randomized incremental algorithm
given above. To determine ∆∗(R) from ∆(R), we must have a fast means of
determining the regions F that contain no vertices of P(S), or conversely, the
regions that contain only parts of faces or edges. This is done as follows: let
t be a triangular face of a region F ∈ ∆(R), with p∗ a vertex of t. Then the
polygon Pt = t ∩ P(S) can be determined using the algorithm of Kirkpatrick
and Seidel [31] in time on the order of |F | log At, where At is the number of
sides of Pt. All but two of the sides of Pt correspond to faces of P(S), so that
the total time to compute all such polygons is expected O(n log A′), where A′ is
the total number of faces of P(S) identified. If a region F ∈ ∆(R) contains no
vertices of P(S), the polygons corresponding to faces of F completely determine
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the structure of F ∩P(S), and this can be verified or disproven in O(|F |) time.
Thus the regions in ∆∗(R) and their corresponding halfspaces can be found in
O(n)(log r + log A′) time.

Now to consider the problem of estimating A, or rather, of using only lower
bounds for A. To do this, determine ∆∗(R) for a sequence of sample sizes, using
at each step an estimate A∗ of A. Initially, the A∗ value is some constant, say 10.
In the general step, we have an estimate A∗ and a set of halfspaces S still being
considered. If A∗ > |S|, then compute P(S) using the randomized incremental
algorithm. Otherwise, we compute ∆∗(R) and the sets F ∧S with r = |R| = A∗,
and include in S those halfspaces with complements in ∪F∈∆∗(R)F ∧S. Suppose
that at least half of the current halfspaces are eliminated in this way. Then
the current value of A∗ is retained for another iteration. Otherwise, assign
A∗ ← (A∗A′)2.

Theorem 4.11 Given a set S of n halfspaces in E3, where P(S) has A vertices,

the intersection P(S) can be computed in O(n log A) time.

Proof. The time needed for the general step of the algorithm is dominated
by the time to compute P(R) and the sets F ∧ S for F ∈ ∆∗(R). As noted
above, this is expected O(n)(log r + log A′), where r = A∗ and A′ is a lower
bound on A. Let A∗

i denote the ith value assigned to A∗. During a period that
A∗ = A∗

i , the number of halfspaces is cut in half at each step except the last
one, so the expected time to perform the steps during that period is within a
constant factor of

(n + n/2 + n/4 + . . .) log A∗
i A

′ = 2n logA∗
i A

′,

where A′ here denotes the largest value assumed by that variable during the
period. Since log A∗

i+1 ≥ 2 logA∗
i A

′, the total work done before A∗ = A∗
i is

expected O(n log A∗
i ). Let i0 = max{i | A∗

i ≤ A2}. Then the expected work for
A∗

i with i ≤ i0 is O(n log A).
We must still bound the work for A∗

i with i > i0. By Lemma 4.10, the
expected proportion of halfspaces eliminated is 1 − O(A/A∗

i ); by Markov’s in-
equality, the probability that the number of halfspaces is not cut in half is
bounded above by a quantity proportional to A/A∗

i . That is, the probability
that we will perform the general step with A∗ = A∗

i , and then immediately
reassign A∗ as A∗

i+1, is no more than O(A/A∗
i ). The work done before A∗ is

not reassigned is therefore bounded above by
∑

i≥i0
(A/A∗

i )O(n log A∗
i+1). This

rapidly-converging sum is dominated by its leading term, and since A∗
i > A2

for i > i0, we have O(n) expected work before the number of halfspaces is cut
in half. The total work for i > i0 is O(n + n/2 + n/4 + . . .) = O(n), which
completes the proof.

4.3 Spherical intersections and diameter

In this section, we give an algorithm to compute the intersection of a set of
fixed-radius balls in E3, and apply this algorithm to the problem of computing
the diameter of a point set in E3.
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Such an intersection will be called a spherical intersection. In general, given
S ⊂ Ed, the ρ-spherical intersection of S, or Iρ(S), is the intersection of the
closed balls of radius ρ that have centers at the sites of S. Spherical intersec-
tions have many properties in common with convex polytopes, which are the
intersections of sets of closed halfspaces. Like polytopes, spherical intersections
are convex, and have vertices, edges, and faces, that in E3 naturally define a
planar graph. That graph has O(n) descriptive complexity [29]. Like polytopes,
spherical intersections have duals, which were introduced as α-hulls in [21].

Unfortunately, spherical intersections do not share with convex polytopes
some properties helpful for algorithms. In particular, the divide-and-conquer
technique of Preparata and Hong[36] does not seem to lead to a fast algorithm
for computing spherical intersections. Our simple algorithm for spherical inter-
sections, requiring O(n log n) expected time, is asymptotically faster than any
previous algorithm.

The spherical intersection problem arises in a classic problem of computa-
tional geometry, the diameter problem. Let S ⊂ Ed contain n sites (points).
The diameter DS is the largest distance between a pair of sites. A diametral

pair of S is a pair of sites that realize the diameter. The problem of determining
the diameter (and all diametral pairs) of a point set in the plane has long been
known to require Θ(n log n) time [37]. In E3, the number of diametral pairs of
n sites is known to be O(n), as an easy consequence of the fact that the DS-
spherical intersection has O(n) descriptive complexity. This suggests that the
diameter problem in E3 should not be too much harder than for E2. However,
obtaining an algorithm for E3 with complexity close to O(n log n) “has been a
source of frustration to a great many workers”[37] in computational geometry.
Our algorithm requiring O(n log n) expected time improves the on the best al-
gorithms previously known, that have worst-case time bounds no better than
O(n
√

n log n) [2].
Our algorithm for spherical intersection is very similar to the incremental

algorithm in §4.2, except that instead of adding halfspaces one by one, we add
closed balls of radius ρ. The objects of §2 are the complements of these balls,
since we want the edges defined by the balls that are contained in all the balls.
The geometric fact necessary to the correctness of this algorithm is given in the
following lemma.

Lemma 4.12 In the spherical intersection algorithm, the balls in the conflict

lists of the three new edges bounding a face are contained in the conflict lists of

the deleted edges bounding that face.

The proof is expressed in terms of unit balls, but obviously holds for balls
of any given radius.

Proof. Suppose the edges involved are on an old face F and a new face F ′,
with B the newly added ball, so that F ′ = F ∩ B. Then two edges e1 and
e2 that are cut by the sphere bounding B give two new edges e′1 and e′2, and
another new edge e12 which is the intersection of F with the bounding sphere of
B. Since e′1 ⊂ e1 and e′2 ⊂ e2, so it is only necessary to show the containment
for e12.
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v

p

p′

Figure 1: A vertex v and a point p on new edge e.

The lemma is proven using the following fact: for points x, y on a unit sphere,
if point z is no farther than 1 from x and y (in straight-line distance), then z is
no farther than 1 from all points on the (minor) great circle arc connecting x
and y. This fact is easily proven.

Now suppose v is a vertex of a deleted edge and also a vertex of a new edge,
so v is within B. (See Figure 1.) For a point p on e, the great circle arc between
p and v is contained in F ′, using the geometric fact. If this arc is continued past
p, it will reach a point p′ on a deleted edge. Again using the geometric fact, any
ball that contains v and p′ will contain p. Thus if p is outside any ball, then
either v or p′ is, and that ball’s complement is on the conflict list for the edge
containing v or the edge containing p′.

This lemma implies that the update condition for randomized incremental
construction of spherical intersections is satisfied. To make the appropriate δ
relation functional, we require nondegeneracy, which means here that no four
input points are on the same sphere of radius ρ.

Theorem 4.13 Given a nondegenerate set S of n points in E3, their spherical

intersection Iρ(S) can be computed in O(n log n) expected time.

Proof. With the above lemma, the update condition holds; the objects are
in a set S, the set of complements of closed balls of radius ρ about the points

S; the δ relation has FδX for X ∈ S
(4)

when F is an edge in Iρ(X
′), where X ′

is the set of points corresponding to the regions in X . Nondegeneracy implies
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that δ is functional. As noted above, the results of [29] imply that τ0(r) = O(r).

Next we give a reduction from the diameter problem to the spherical in-
tersection problem. The idea is this: let Dp denote the farthest distance from
point p to a site in S. Let ρ = Dp for some p ∈ S. Any point q ∈ S that is
in the interior of Iρ(S) is closer than Dp to all points in S. The point q has
Dq < Dp ≤ DS , and so q is not in any diametral pair. On the other hand, if
q ∈ S is outside Iρ(S), then DS ≥ Dq > Dp. Thus, if there are no points of
S outside Iρ(S), then DS = Dp, and if there are any such points, only those
points can possibly be in diametral pairs.

Based on these observations, we have an algorithm. Perform the following
loop: choose p ∈ S at random. Compute Dp and the intersection Iρ(S) for ρ =
Dp. Find the points of S outside Iρ(S); if there are none, we have the diametral
pairs using Iρ(S). If there are points outside Iρ(S), assign S ← S \ Iρ(S).

To find the set S \ Iρ(S), we use an algorithm for point location in a planar
subdivision (see [37, 20]). To do this, define a “stereographic projection” for
Iρ(S) as follows: pick a point p on the boundary of Iρ(S), and a sphere Z
determining the face of Iρ(S) containing p. Let h denote the tangent plane to
Z at p. Let p′ be the point antipodal to p on Z, and h′ the tangent plane to
Z at p′. Define a function F (x) from E3 to h′, by mapping a point x to the
intersection point with h′ of the ray from p passing through x. (If x is on the
other side of h from Z or on h then F (x) is undefined, and x /∈ Iρ(S); this is
checked for all s ∈ S in constant time per point.) The set of points that are
the image under F of the edges of Iρ(S) naturally induce a subdivision of H .
Now in O(n log n) time, build a data structure for determining the location of
a point on that subdivision. For each point s ∈ S, determine in O(log n) time
the location of F (s) (if F (s) is defined). The region of the subdivision that
contains F (s) corresponds to a face of Iρ(S), and s ∈ Iρ(S) if and only if the
line segment ps does not pass through the boundary of that face. We can also
determine if s is on a face of Iρ(S). If so, and ρ = DS , then s forms a diametral
pair with the site corresponding to the face.

We have an optimal time bound for the algorithm:

Theorem 4.14 Given a set S ⊂ E3 of n nondegenerate points, the diametral

pairs of S can be determined in O(n log n) expected time.

Proof. Suppose the points of S could be listed in nonincreasing order of
their Dp values. Then when p ∈ S is chosen at random, with probability 1/n
its rank in that list is k, for 1 ≤ k ≤ n, so that at most k − 1 points of S need
be considered in any further computation of the diameter. From Theorem 4.3,
Iρ(S) can be computed in O(n log n) expected time, and O(n log n) time suffices
to find S\Iρ(S), using an optimal algorithm for point location.Thus tn expected
time is enough to determine the diameter of S, where

tn ≤ O(n log n) +
∑

1≤k<n

tk/n.

It is readily verified that tn = O(n log n).
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4.4 Algorithms for halfspace range queries

In this section, the new (≤k)-set bound gives an improved storage bound for a
deterministic algorithm for halfspace range search in E3. Two new randomized
algorithms for range search in Ed are given and analyzed. For convenience we
will assume that the input points are in general position, that is, no d + 1 are
coplanar.

Given n points S ⊂ Ed, the halfspace range search problem is to build
a data structure for S so that given a query halfspace h∗, the set of points
h∗ ∩ S can be reported quickly. In [8], Chazelle and Preparata show that in
the case d = 3, a data structure requiring O(n(log n)8(log log n)4) storage can
be constructed that allows queries to be answered in O(A + log n) time, where
A is the number of points in the answer to the query. Theorem 1 of that
paper implies that if ĝk,3(n) = O(nkβ), then the storage required by their data
structure is O(n(log n)2(β−1)(log log n)β−1). The bound given here implies that
O(n(log n)2 log log n) storage is sufficient.

The upper bound on ĝk,d(n) gives a bound on a randomized algorithm for
halfspace range search in Ed. This algorithm is conveniently described by
putting the range query problem into a dual form, using the transform D de-
scribed in [20, §3.1], to which the reader is referred for background. Given point
p = (π1, . . . , πd), D(p) is the hyperplane of points x = (x1, . . . , xd) satisfying
xd = 2π1x1 + . . . 2πd−1xd−1 − πd. Thus D maps points in Ed to non-vertical
hyperplanes in Ed. (Here “non-vertical” means that the hyperplane does not
contain a vertical line. A vertical line is a translate of the xd-axis.) We will
also have D map non-vertical hyperplanes to points, so D(h) for hyperplane h
is the point p such that D(p) = h. Under this duality, incidence and order are
preserved, so that point p is on plane h if and only if D(h) ∈ D(p), and also p is
in the halfspace h+ if and only if D(h) ∈ D(p)+. In this setting, a point set S
gives rise to an arrangement of hyperplanes A by the duality transform. Given
a query halfspace h−, the answer to the query is the set of all hyperplanes D(p)
in A such that D(h) is below them, that is, D(h) ∈ D(p)−.

We will be interested in the set of all points that are below no more than k
hyperplanes of A, for some k. These points correspond to the set of all query
halfspaces h− whose answer set has no more than k points. The lower surface of
this set of points is called a k-level. It is not too hard to see that the number of
vertices of cells above a k-level is bounded by ĝk,d(S). This value asymptotically
bounds the total complexity of the cells of A above the k-level.

The main idea for the range search algorithm is the following generalization
and restatement of Lemma 5.4 of [12].

Lemma 4.15 Suppose S ⊂ Ed in general position, with |S| = n. Let R ⊂ S be

a random subset of size r. Then there is an integer j∗ = O(log r/ log log r) and

a value α∗ = O(log r/r), such that with probability at least 1/2, the following

holds: the j∗-level of R is below the n/(r− d2)-level of S, and strictly above the

α∗n-level of S.

Proof. (Sketch) Consider any simplex T whose vertices are those of a given
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polytope in the j∗-level of R. The simplex T has a j∗/r proportion of the half-
planes of R above it. This is good evidence that the proportion of hyperplanes
of S above T is more than 1/r and smaller than (log r)/r. This can be made
precise by appealing to Corollaries 4.3 and 4.4 of [12], in the same way as done
in the proof of Lemma 5.4 of that paper.

Let us assume that r is constant (though “sufficiently large”). A given
random subset can be tested for satisfying the conditions of Lemma 4.15 in
O(ĝj∗,d(r)n) time, which is O(n) for fixed r. Thus, by repeatedly sampling, a
suitable sample can be found in two trials, on the average.

Suppose that for a query halfspace h−, the point D(h) is below the j∗-level of
R, where R is now a suitable sample. (We will assume that the query halfspace
contains the −∞ point of the xd-axis. Symmetric processing must be done for
positive halfspaces.) Then D(h) is below the n/(r − d2)-level of A, and the
query has answer size A = Ω(n). Here sophistication doesn’t pay, and linear
search through S determines the answer in O(n) = O(A) time. On the other
hand, suppose D(h) is above or on the j∗-level of R. Then recursively search a
data structure for S, which is built as follows: triangulate the polyhedral cells
of the j∗-level of R. By the results of [12], this yields O(ĝj∗,d(r)) simplices, as
r →∞. (The triangulation here involves simple pieces that are simplices when
bounded; the unbounded pieces can be viewed as simplices with vertices “at
infinity.”) For any simplex T , let S(T ) be the set of hyperplanes of A that are
above any point of T . Recursively build a search structure for S(T ), for all such
simplices T . To answer a query when D(h) is above the j∗-level of R, search
the data structure for the simplex containing the vertical downward projection
of D(h).

A necessary observation here is that since R satisfies the conditions of
Lemma 4.15, each simplex T on the j∗-level of R has vertices that have no
more than α∗n hyperplanes above them. Any hyperplane above a point in T is
also above some vertex of T , so |S(T )| is no more than dα∗n.

That fact implies that our data structure has a query time of O(A + log n),
and a storage bound B(n) satisfying

B(n) ≤ O(n) + O(ĝj∗,d(r))B(dα∗n)

≤ O(n) + O(rbd/2cj
dd/2e
∗ )B(O(log r)n/r),

as r → ∞, using Theorem 3.1. The given bound O(nbd/2c+ε) follows. The
expected time required by the algorithm to build the data structure satisfies
the same bound.

Lemma 4.15 and the upper bound on ĝk,d(n) can be applied in another way
to obtain an algorithm for halfspace range queries that requires less storage and
preprocessing, at the cost of a longer query time. Consider the arrangement A′

j∗
of hyperplanes defined by the j∗-facets of R. These hyperplanes are the duals of
the vertices of the cells of A that are on the j∗-level of A (or, symmetrically, on
the (n− j∗)-level). It will be convenient later to include in A′

j∗
some additional

hyperplanes: these hyperplanes are vertical, contain d − 1 points of S, and
have j∗ points of S on one side. Such hyperplanes correspond dually to the
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“endpoints” at infinity of unbounded edges of A on the j∗-level (or on the
(n− j∗)-level).

The cells of A′
j∗

induce a partition of S. For each cell C, we recursively build
a data structure for the points C ∩ S.

In answering a query h−, as above we check if D(h) is below the j∗-level of
R. If so, the answer size is more than n/(r − d2), so a naive algorithm should
be used. If D(h) is above the j∗-level of R, the answer is smaller and the data
structure must be used. The cells of the arrangement A′

j∗
are examined. Some

do not intersect the query hyperplane, and so contribute either all or none of
the points they contain to the answer. The remaining cells, that do meet the
query hyperplane, must be examined recursively.

From previous analysis [28, 4], there are two key properties of this algorithm
that imply a bound on the query time. The first is that the number of cells cut
by a given query hyperplane is O(

(gj∗,d(r)
d−1

)

), the complexity of the subdivision
of the query hyperplane by the hyperplanes of A′

j∗ . (It is easy to show that the
number of vertical hyperplanes in A′

j∗
is no more than gj∗,d(r).)

The second property is that the total number of points in the cells examined
for a query is no more than dα∗n, when the dual point D(h) is above the j∗-level
of R. (Otherwise, no recursive call is made, and the work is proportional to the
answer size.) To show this, consider the vertical projection x of D(h) onto the
j∗-level of R. The hyperplanes above D(h) are also above x, so h− ⊂ D(x)−.
The projection x is contained in a (d − 1)-simplex T on the j∗-level. (We
are using the generalized sense of “simplex” mentioned above.) Suppose T is
bounded. Any halfspace containing x contains at least one vertex of T , so D(x)−

is contained in U , the union of the halfspaces D(v)− for v a vertex of T . This
implies h− ⊂ U . Since the duals of the vertices of T are j∗-facets of R, U is a
union of cells of A′

j∗
. Hence the total number of points in the cells examined

for the query is no more than dα∗n.
Suppose the simplex containing x is unbounded. Then x is in a (generalized)

simplex on the j∗-level of R, and so is the convex closure of no more than d− 1
vertices and unbounded edges. The edge endpoints at infinity correspond dually
to the vertical hyperplanes added to A′

j∗
, and the points are dual to j∗-facet

hyperplanes. Let U be the union of the (negative) halfspaces bounded by these
d hyperplanes. Then h− ⊂ D(x)− ⊂ U , and again the total number of points
in the cells examined for the query is no more than dα∗n.

With these two facts, by [28, 4] the resulting query time is O(A+nβ), where
β = 1− 1/(1 + B), and

B =
O

(

log
(

rbd/2cj
dd/2e
∗

d−1

)

)

− log(d + 1)α∗
,

so β = 1− γ + ε, where γ = 1/(1 + (d − 1)bd/2c), and ε > 0 is independent of
n and decreasing in r. The preprocessing time is expected O(n log n) and the
storage is O(n), as is easy to verify.
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5 Concluding Remarks

One natural question regarding these results: can deterministic algorithms do
the same things? For example, Theorem 3.7 guarantees the existence of subsets
that are good for divide-and-conquer; can a deterministic algorithm find such
subsets? The work of [6] says yes. However, these algorithms are expensive,
requiring Ω(nb) time. The recent algorithms of Matousek and Agarwal are
faster, but seem to be more specific: they apply to arrangements of lines in
the plane [32, 1]. The results in these papers are stronger than those here, and
they show how to find ranges all with O(n/r) conflicts, rather than O(n/r) on
average. How general, and fast, can these results be made?

Another natural question concerns problems for which τ0(r)� A for r < n.
The problems of convex hull computation for d > 3, visibility graph construc-
tion, and hidden surface elimination are all in this category. Here our results
do not readily imply output-sensitive algorithms. Is there some way to make
effective use of randomization for these problems?

As one more application of random sampling, the ideas of this paper can
readily be used to obtain an algorithm for point location in planar subdivisions
that requires O(n log n) expected preprocessing, O(n) space, and O(log n) query
time.

The results of §3.2 can be extended to some “degenerate” cases where δ is
not functional, so that the work done in the convex hull algorithm is O(n log A′),
where A′ is the number of extreme points in the output polytope. This extension
will be reported elsewhere.
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