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Abstract

We give algorithms for the M -estimators minx ‖Ax− b‖G, where A ∈ Rn×d and b ∈ Rn,
and ‖y‖G for y ∈ Rn is specified by a cost function G : R 7→ R≥0, with ‖y‖G ≡

∑
iG(yi).

The M -estimators generalize `p regression, for which G(x) = |x|p. We first show that the Huber
measure can be computed up to relative error ε in O(nnz(A) log n+poly(d(log n)/ε)) time, where
nnz(A) denotes the number of non-zero entries of the matrix A. Huber is arguably the most
widely used M -estimator, enjoying the robustness properties of `1 as well as the smoothness
properties of `2.

We next develop algorithms for general M -estimators. We analyze the M -sketch, which is a
variation of a sketch introduced by Verbin and Zhang in the context of estimating the earthmover
distance. We show that the M -sketch can be used much more generally for sketching any M -
estimator provided G has growth that is at least linear and at most quadratic. Using the M -
sketch we solve the M -estimation problem in O(nnz(A) + poly(d log n)) time for any such G
that is convex,making a single pass over the matrix and finding a solution whose residual error
is within a constant factor of optimal, with high probability.

1 Introduction.

In recent years there have been significant advances in randomized techniques for solving numer-
ical linear algebra problems, including the solution of diagonally dominant systems [28, 29, 39],
low-rank approximation[2, 9, 15, 12, 13, 34, 36, 38], overconstrained regression[9, 21, 34, 36, 38],
and computation of leverage scores [9, 17, 34, 36]. There are many other references; please see
for example the survey by Mahoney [30]. Much of this work involves the tool of sketching,
which in generality is a descendent of random projection methods as described by Johnson and
Lindenstrauss[1, 4, 3, 11, 26, 27], and also of sampling methods [10, 14, 15, 16, 18, 19, 20]. Given a
problem involving A ∈ Rn×d, a sketching matrix S ∈ Rt×n with t� n is used to reduce to a similar
problem involving the smaller matrix SA, with the key property that with high likelihood with
respect to the randomized choice of S, a solution for SA is a good solution for A. More generally,
data derived using SA is used to efficiently solve the problem for A. In cases where no further
processing of A is needed, a streaming algorithm often results, since a single pass over A suffices to
compute SA.

An important property of many of these sketching constructions is that S is a subspace em-
bedding, meaning that for all x ∈ Rd, ‖SAx‖ ≈ ‖Ax‖. (Here the vector norm is generally `p for
some p.) For the regression problem of minimizing ‖Ax− b‖ with respect to x ∈ Rd, for inputs
A ∈ Rn×d and b ∈ Rn, a minor extension of the embedding condition implies S preserves the norm
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of the residual vector Ax − b, that is ‖S(Ax− b)‖ ≈ ‖Ax− b‖, so that a vector x that makes
‖S(Ax− b)‖ small will also make ‖Ax− b‖ small.

A significant bottleneck for these methods is the computation of SA, taking Θ(nmd) time with
straightforward matrix multiplication. There has been work showing that fast transform methods
can be incorporated into the construction of S and its application to A, leading to a sketching time
of O(nd log n) [3, 4, 7, 38].

Recently it was shown that there are useful sketching matrices S such that SA can be com-
puted in time linear in the number nnz(A) of non-zeros of A [6, 9, 34, 36]. With such sketching
matrices, various problems can be solved with a running time whose leading term is O(nnz(A))
or O(nnz(A) log n). This prominently includes regression problems on “tall and thin” matrices
with n � d, both in the least-squares (`2) and robust (`1) cases. There are also recent recursive
sampling-based algorithms for `p regression [35], as well as sketching-based algorithms for p ∈ [1, 2)
[34] and p > 2 [41], though the latter requires sketches whose size grows polynomially with n. Sim-
ilar O(nnz(A)) time results were obtained for quantile regresion [42], by relating it to `1 regression.
A natural question raised by these works is which families of penalty functions can be computed
in O(nnz(A)) or O(nnz(A) log n) time.

M-estimators. Here we further extend the “nnz” regime to general statistical M -estimators,
specified by a measure function G : R 7→ R≥0, where G(x) = G(−x), G(0) = 0, and G is non-
decreasing in |x|. The result is a new “norm” ‖y‖G ≡

∑
i∈[n]G(yi). (In general these functions ‖‖G

are not true norms, but we will sometimes refer to them as norms anyway.) An M -estimator is
a solution to minx ‖Ax− b‖G. For appropriate G, M -estimators can combine the insensitivity to
outliers of `1 regression with the low variance of `2 regression.

The Huber norm. The Huber norm [24], for example, is specified by a parameter τ > 0, and
its measure function H is given by

H(a) ≡

{
a2/2τ if |a| ≤ τ
|a| − τ/2 otherwise,

combining an `2-like measure for small x with an `1-like measure for large x.
The Huber norm is of particular interest, because it is popular and “recommended for almost

all situations” [43], because it is “most robust” in a certain sense[24], and because it has the useful
computational and statistical properties implied by the convexity and smoothness of its defining
function, as mentioned above. The smoothness makes it differentiable at all points, which can lead
to computational savings over `1, while enjoying the same robustness properties with respect to
outliers. Moreover, while some measures, such as `1, treat small residuals “as seriously” as large
residuals, it is often more appropriate to have robust treatment of large residuals and Gaussian
treatment of small residuals [22].

We give in §2 a sampling scheme for the Huber norm based on a combination of Huber’s `1
and `2 properties. We obtain an algorithm yielding an ε-approximation with respect to the Huber
norm of the residual; as stated in Theorem 2, the algorithm needs O(nnz(A) log n)+poly(d/ε) time
(see, e.g., [31] for convex programming algorithms for solving Huber in poly(d/ε) time when the
dimension is poly(d/ε)).
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M-sketches for M-estimators. We also show that the sketching construction of Verbin and
Zhang [40], which they applied to the earthmover distance, can also be applied to sketching for
general M -estimators.

This construction, which we call the M -sketch1 is constructed independently of the G function
specifying the M -estimator, and so the same sketch can be used for all G. That is, one can first
sketch the input, in one pass, and decide later on the particular choice of penalty function G. That
is, the entire algorithm for the problem minx ‖Ax− b‖G is to compute S ·A and S · b, for a simple
sketching matrix S described below, and then solve the regression problem minx ‖SAx − Sb‖G,w,
where ‖‖G,w is defined as follows.

Definition 1 For dimension m and non-negative weights w1, . . . , wm, define the weighted G-measure
of a vector y ∈ Rm, denoted ‖y‖G,w, to be

∑
i∈[m]wiG(yi). We refer to w as the weight vector.

Notice that ‖y‖G equals ‖y‖G,w when wi = 1 for all i. If the G function is convex, then using the
non-negativity of w, it follows that ‖y‖G,w is a convex function of y.

The sketch SA (and Sb) can be computed in O(nnz(A)) time, and needs O(poly(d log n)) space;
we show that it can be used in O(poly(d log n)) time to find approximate M -estimators, that with
constant probability have a cost within a constant factor of optimal. The success probability can
be amplified by independent repetition and choosing the best solution found among the repetitions.

Condition on G. For our results we need some additional conditions on the function G beyond
symmetry and monotonicity: that it grows no faster than quadratically in x, and no slower than
linearly. Formally: there is α ∈ [1, 2] and CG > 0 so that for all a, a′ with |a| ≥ |a′| > 0,∣∣∣ a

a′

∣∣∣α ≥ G(a)

G(a′)
≥ CG

∣∣∣ a
a′

∣∣∣ (1)

The subquadratic growth condition is necessary for a sketch with a sketching dimension sub-
polynomial in n to exist, as shown by Braverman and Ostrovsky [8]. Also, subquadratic growth is
appropriate for robust regression, to reduce the effect of large values in the residual Ax− b, relative
to their effect in least-squares. Almost all proposed M -estimators satisfy these conditions [43].

The latter linear lower bound on the growth of G holds for all convex G, and many popular
M -estimators have convex G [43]. Moreover, the convexity of G implies the convexity of ‖‖G, which
is needed for computing a solution to the minimization problem in polynomial time. Convexity
also implies significant properties for the statistical interpretation of the results, such as consistency
and asymptotic normality[23, 37].

However, we do not require G to be convex for our sketching results, and indeed some M -
estimators are not convex; here we simply reduce a large non-convex problem, minx ‖Ax− b‖G, to a
smaller non-convex problem minx ‖S(Ax− b)‖G,w of a similar kind. The linear growth lower bound
does imply that we are unable to apply sketching to some proposed M -estimators; the “Tukey”
estimator, for example, whose G function is constant for large argument values, is not included in
our results. However, we can get close, in the sense that at the cost of more computation, we can
handle G functions that grow arbitrarily slowly.

1Verbin and Zhang call the construction a Rademacher sketch; with apologies, we prefer our name, for this
application.
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Not only do we obtain optimal O(nnz(A) + poly(d log n)) time approximation algorithms for
these M -estimators, our sketch is the first to non-trivially reduce the dimension of any of these esti-
mators other than the `p-norms (which are a special case of M -estimators). E.g., for the L1−L2 esti-

mator in which G(x) = 2(
√

1 + x2/2−1), the Fair estimator in which G(x) = c2
[
|x|
c − log(1 + |x|

c )
]
,

or the Huber estimator, no dimensionality reduction for the regression problem was known.

1.1 Techniques.

Huber algorithm. Our algorithm for the Huber estimator, §2, involves importance sampling
of the (Ai:, bi), where a sampling matrix S′ is obtained such that ‖S′(Ax− b)‖H,w is a useful
approximation to ‖Ax− b‖H . The sampling probabilities are based on a combination of the `1
leverage score vector u ∈ Rn, and the `2 leverage score vector u′ ∈ Rn. The `1 vector u can be
used to obtain good sampling probabilities for `1 regression, and similarly for u′ and `2. Since the
Huber measure has a mixed `1/`2 character, we are able to use a combination of `1 and `2 scores
to obtain good sampling probabilities for Huber. A key observation we use is Lemma 3, which
roughly bounds the Huber norm of a vector in terms of n, τ , and its `1 and `2 norms, and leads to
a recursive sampling algorithm. Several difficulties arise, most notably that the Huber norm is not
scale-invariant, that is, for small arguments it scales quadratically with its input while for large
arguments it scales linearly. This complicates the sampling, as well as simple aspects such as net
arguments typically used for `p-regression, which relied on scale-invariance.

The M-sketch construction. Our sketch, a variant of that of Verbin and Zhang [40], is given
formally as (6) in §3.1. It can be seen as a form of sub-sampling and finding heavy hitters,
techniques common in data streams [25]; however, most analyses we are aware of concerning such
data structures, with the exception of that of Verbin and Zhang for earthmover distance, require
a median operation in the sketch space and thus do not preserve convexity. This is the first time
such sketches have been considered and shown to work in the context of regression.

We describe here a variant construction, comprising a sequence of sketching matrices S0, S1, . . . Shmax ,
for a parameter hmax, each comprising a block of rows of our sketching matrix:

S ≡


S0

S1

S2
...

Shmax

 .

When applied to vector y ∈ Rn, each Sh ignores all but a subset Lh of n/bh entries of y, where
b > 1 is a parameter, and where those entries are chosen uniformly at random. (That is, Sh can

be factored as S′hS
′′
h, where S′′h ∈ Rn/bh×n samples row i of A by having column i with a single 1

entry, and the rest zero, and S′h has only n/bh nonzero entries.)
Each Sh implements a particular sketching scheme called COUNT-SKETCH on its random subset.

COUNT-SKETCH splits the coordinates of y into groups (“buckets”) at random, and adds together each
group after multiplying each coordinate by a random ±1; each such sum constitutes a coordinate
of Shy. COUNT-SKETCH was recently [9, 34, 36] shown to be a good subspace embedding for `2,
implying here that the matrix S0, which applies to all the coordinates of y = Ax, has the property
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that ‖S0Ax‖2 is a good estimator for ‖Ax‖2 for all x ∈ Rd; in particular, each coordinate of S0y is
the magnitude of the `2 norm of the coordinates in the contributing group.

Why should our construction, based on `2 embeddings, be suitable for, e.g., `1, with ‖D(w)SAx‖1
an estimate of ‖Ax‖1? Why should the M -sketch be effective for that norm? Here D(w) is an ap-
propriate diagonal matrix of weights w. An intuition comes from considering the matrix Shmax for
the smallest random subset Lhmax of y = Ax to be sketched; we can think of Shmaxy as one coor-
dinate of y = Ax, chosen uniformly at random and sign-flipped. The expectation of ‖Shmaxy‖1 is∑

i∈[n] ‖yi‖2/n = ‖y‖1/n; with appropriate scaling from D(w), that smallest random subset yields
an estimate of ‖y‖1 = ‖Ax‖1. (This scaling is where the values w are needed.) The variance of this
estimate is too high to be useful, especially when the norm of y is concentrated in one coordinate,
say y1 = 1, and all other coordinates zero. For such a y, however, ‖y‖2 = ‖y‖1, so the base level
estimator ‖S0y‖2 is a good estimate. On the other hand, when y is the vector with all coordinates
1/n, the variance of ‖Slogb ny‖1 is zero, while ‖S0y‖2 ≈ ‖y‖2 is quite inaccurate as an estimator of
‖y‖1. So in these extreme cases, the extreme ends of the M -sketch are effective. The intermediate
matrices Sh of the M -sketch help with less extreme cases of y-vectors.

Analysis techniques. While helpful to the intuition, the above observations are not used to
prove the results here. The general structure of our arguments is to show that, conditioned on
several constant probability events, for a fixed x ∈ Rd there are bounds on:

• contraction, so with high probability, ‖SAx‖G,w is not too much smaller than ‖Ax‖G;

• dilation, so with constant probability, ‖SAx‖G,w is not too much bigger than ‖Ax‖G.

This asymmetry in probabilities means that some results are out of reach, but still allows approx-
imation algorithms for minx ‖Ax− b‖G. (We blur the distinction between applying S to A for
vectors x ∈ Rd, and to [A b] for vectors [x −1].) If the optimum xOPT for the original problem
has ‖S(AxOPT − b)‖G that is not too large, then it will be a not-too-large solution for the sketched
problem minx ‖S(Ax− b)‖G,w. If contraction bounds hold with high probability for a fixed vector
Ax, and a weak dilation bound holds for every Ax, then an argument using a metric-space ε-net
shows that the contraction bounds hold for all x; thus, there will be no x that gives a good, small
‖S(Ax− b)‖G,w and bad, large ‖Ax− b‖G.

The contraction and dilation bounds are shown on a fixed vector y ∈ Rn by splitting up the
coordinates of y into groups (“weight classes”) with the members of a weight class having roughly
equal magnitude. (For y = SAx, it will convenient to consider weight classes based on the values
G(yi), not |yi| itself; for this section we won’t dwell on this distinction: assume here G(a) = |a|.) A
weight class W is then analyzed with respect to its cardinality: there will be some random subset
(“level”) Lĥ for which |W ∩ Lĥ| is small relative to the number of rows of Sĥ (each row of Sĥ
corresponds to a bucket, as an implementation of COUNT-SKETCH), and therefore the members of W
are spread out from each other, in separate buckets. This implies that each member of W makes its
own independent contribution to ‖Sy‖G,w, and therefore that ‖Sy‖G,w will not be too small. Also,
the level Lĥ is chosen such that the expected number of entries of the weight class is large enough
that the random variable |W ∩Lĥ| is concentrated around its mean with exponentially small failure
probability in d, and so this contribution from W is well-behaved enough to union bound over a
net.

The above argument works when the weight class W has many members, i.e., at least d coordi-
nates in order to achieve concentration. For those W without many members which still contribute
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significantly to ‖y‖G, we need to ensure that as we range over y in the subspace, these weight classes
only ever involve a small fixed set of coordinates. We show this by relating the G function to the
function f(x) = x2, and arguing that these weight classes only involve coordinates with a large `2
leverage score; thus the number of such coordinates is small and they can be handled separately
once for the entire subspace by conditioning on a constant probability event.

To show that ‖Sy‖G,w will not be too big, we show that W will not contribute too much to

levels other than the “Goldilocks” level Lĥ: for h < ĥ, for which |Lh ∩W | is expected to be large,
the fact that members of W ∩ Lh will be crowded together in a single bucket implies they will
cancel each other out, roughly speaking; or more precisely, the fact that the COUNT-SKETCH buckets
have an expectation that is the `2 norm of the bucket entries implies that if a bucket contains a
large number of entries from one weight class, those entries will make a lower contribution to the
estimate ‖Sy‖G,w than they did for Lĥ. For h a bit bigger than ĥ, W ∩ Lh will likely be empty,
and W will make no contribution to ‖Shy‖.

This argument does not work when the function G has near quadratic growth, and would result
in an O(log n) dilation. By modifying the estimator we can achieve an O(1) dilation by ignoring
small buckets, and adding only those buckets in a level h that are among the top ones in value.
Note that if G is convex, then so is this “clipped” version, since at each level we are applying a Ky
Fan norm. The distinction of taking the top number of buckets versus those buckets whose value
is sufficiently large seems important here, since only the former results in a convex program.

1.2 Outline.

We give our algorithm for the Huber M -estimator in §2.
Next we give some definitions and basic lemmas related to M -sketches, that for a given vector

y, under appropriate assumptions S does not contract y too much (§3.5). We also show it does not
dilate it too much (§3.6). In §3.6.2, we sharpen the dilation result by changing slightly the way we
use the sketches, improving the dilation bound while preserving the contraction bound.

2 ε-Approximation for the Huber Measure.

Here we consider specifically the Huber measure: for parameter τ > 0, and a ∈ R, the Huber
function

H(a) ≡

{
a2/2τ if |a| ≤ τ
|a| − τ/2 otherwise.

The Huber “norm” is ‖z‖H =
∑

pH(zp).
The main theorem of this section, proven in §2.1:

Theorem 2 (Input Sparsity Time Huber Regression) In O(nnz(A) log n) + poly(d/ε) time, given
an n × d matrix A with nnz(A) non-zero entries and n × 1 vector b, with probability at least 4/5,
one can find an x′ ∈ Rd for which ‖Ax′ − b‖H ≤ (1 + ε) minx∈Rd ‖Ax− b‖H .

We will need to relate the Huber norm to the `1 and `2 norms. The following lemma is shown
via a case analysis of the coordinates of the vector z.
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Lemma 3 (Huber Inequality) For z ∈ Rn,

Θ(n−1/2) min{‖z‖1, ‖z‖
2
2/2τ} ≤ ‖z‖H ≤ ‖z‖1.

Proof: For the upper bound, we note that H(a) ≤ |a|, whether |a| ≤ τ or otherwise, and
therefore ‖z‖H ≡

∑
pH(zp) ≤

∑
p |zp| ≡ ‖z‖1. We now prove the lower bound. We consider a

modified Huber measure ‖z‖G given a parameter τ > 0 in which

G(a) ≡

{
a2/2τ if |a| ≤ τ
|a| otherwise.

Then ‖z‖H ≤ ‖z‖G ≤ 2‖z‖H , and so it suffices to prove the lower bound for ‖z‖G.
By permuting coordinates, which does not affect the inequality we are proving, there is an s for

which
|z1| ≤ |z2| ≤ . . . ≤ |zs| ≤ τ ≤ |zs+1| ≤ . . . ≤ |zn|.

(We may have s = 0, when all |zi| ≥ τ , or s = n, when all |zi| ≤ τ .) Let U =
∑n

j=s+1 |zj | and

L =
∑s

j=1 z
2
j . Consider the n-dimensional vector w with s coordinates equal to

√
L
s , one coordinate

equal to U , and remaining coordinates equal to 0. Then,

‖w‖G = s · L
s2τ

+ U =
L

2τ
+ U = ‖z‖G. (2)

Moreover,

‖w‖1 = U + s ·
√
L√
s

= U +
√
sL ≥ ‖z‖1, (3)

since subject to a 2-norm constraint L, the 1-norm is maximized when all s coordinates are equal.
Also,

‖w‖22
2τ

=
L

2τ
+
U2

2τ
≥
‖z‖22
2τ

, (4)

since subject to a 1-norm constraint U , the 2-norm is maximized when there is a single non-zero
coordinate.

Combining (2), (3), and (4), in order to show ‖z‖G = Ω(n−1/2) min(‖z‖1, ‖z‖
2
2/2τ) it suffices to

show ‖w‖G = Ω(n−1/2) min(‖w‖1, ‖w‖
2
2/2τ). By the above, this is equivalent to showing

U +
L

2τ
= Ω(n−1/2) ·min

(
U +

√
sL,

U2

2τ
+
L

2τ

)
,

which since s ≤ n, is implied by showing

U +
L

2τ
= Ω(n−1/2) ·min

(
U +

√
nL,

U2

2τ
+
L

2τ

)
. (5)

Note that we can assume U 6= 0, as otherwise the inequality is equivalent to showing L
2τ =

Ω(n−1/2) · min
(√

nL, L2τ

)
. This holds since L

2τ = Ω(n−1/2) L2τ . So we can assume U > 0, and
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by definition of U , this implies that U ≥ τ . We break the analysis into cases:

Case: U2

2τ + L
2τ ≤

1
4(U +

√
nL). What we need to show in this case to prove (5) is U + L

2τ =

Ω(n−1/2)(U
2

2τ + L
2τ ).

Suppose first that L
2τ ≥ U . Then what we need to show in this case is that L

2τ = Ω(n−1/2)(U
2

2τ +
L
2τ ). Since L

2τ appears on both the left and right hand sides, this follows from showing that L
2τ =

Ω(n−1/2)(U
2

2τ ). Using the definition of this case, and that U ≥ τ , we have U
4 + U2

4τ + L
2τ ≤

U
4 +

√
nL
4 ,

which implies that U2

τ ≤
√
nL. So we just need to show that L

2τ = Ω(n−1/2)
√
nL
2 , or equivalently,√

L = Ω(τ). Since L
2τ ≥ U ≥ τ , we have L = Ω(τ2), as desired.

Otherwise, we have U ≥ L
2τ and to prove (5) we need to show U = Ω(n−1/2)

(
U2

2τ + L
2τ

)
. We

can assume U2

2τ ≥
L
2τ , otherwise this is immediate from the fact that U ≥ L

2τ , and so we need to

show U = Ω(n−1/2)U
2

2τ , or equivalently, U
2τ = O(

√
n). Now we use the fact that U2

2τ + L
2τ = Θ(U

2

τ )

realizes the minimum given the case that we are in, and so U2

τ = O(U +
√
nL), or equivalently,

U
τ = O

(
1 +

√
nL
U

)
. Since as mentioned it holds that U2

2τ ≥
L
2τ , we have U2 ≥ L, and so

√
nL
U ≤

√
n.

It follows that U
2τ = O(

√
n), which is what we needed to show.

Case: 1
4(U +

√
nL) < U2

2τ + L
2τ . What we need to show in this case to prove (5) is U + L

2τ =

Ω(n−1/2)(U +
√
nL).

Suppose first that U ≥ L
2τ , and so we need to show U = Ω(n−1/2)(U+

√
nL), which is equivalent

to showing U = Ω(
√
L). Since L

2τ ≤ U , we have
√
L = O(

√
Uτ) = O(U), using that U ≥ τ . This

completes this case.
Otherwise, we have L

2τ ≥ U and need to show L
2τ = Ω(n−1/2)(U+

√
nL). We can assume

√
nL ≥

U , otherwise this is immediate using L
2τ ≥ U , and so we need to show L

2τ = Ω(n−1/2)
√
nL = Ω(

√
L),

or equivalently, L = Ω(τ2). Now we use the fact that U +
√
nL = Θ(

√
nL) realizes the minimum,

and so
√
nL = O

(
U2

2τ + L
2τ

)
, and using that U ≤ L

2τ , this implies
√
nL = O

(
L
2τ ·

U
2τ + L

2τ

)
. Since

U ≥ τ , it follows that
√
nL = O

(
LU
τ2

)
. Now using that U ≤

√
nL, this implies that L = Ω(τ2),

which is what we needed to show.
This completes the proof.

Suppose we want to solve the Huber regression problem minx∈Rd ‖Ax− b‖H , where A is an
n × d matrix and b an n × 1 column vector. We will do so by a recursive argument, and for that
we will need to solve minx∈Rd ‖Ax− b‖H,w, for various weight vectors w. Note that ‖Ax− b‖H,w
is a non-negative linear combination of convex functions of x, and hence is convex. We develop a
lemma for this more general problem, given w. We maintain that if wi 6= 0, then wi ≥ 1.

In our recursion we will have ‖w‖∞ ≤ poly(n) for some polynomial that depends on where we
are in the recursion. These conditions imply that we can partition the positive coordinates of w
into O(log n) groups P j , for which P j = {i | 2j−1 ≤ wi < 2j}.

Let Aj denote the restriction of the input matrix A to those rows i in the set P j . For each
j, let U j be an (α, β)-well-conditioned basis for Aj with respect to `1, meaning U j has the same
column span as Aj ,

∑
i∈P j |U ji |1 = α, and for all x, ‖x‖∞ ≤ β‖U jx‖1 [10]. Here U ji is the i-th

row of U j . Let V j be an approximately orthonormal basis for the column span of Aj , that is,∑
i∈P j ‖V j

i ‖22 = O(d) and for all x, ‖V jx‖2 = (1 ± 1/2)‖x‖2. Here V j
i is the i-th row of V j . Let
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Aj = U jJ j and Aj = V jKj , where J j and Kj are d× d matrices.

For each j and i ∈ P j , let qji =
‖Uj

i ‖1
α and let rji =

‖V j
i ‖

2
2∑

i′∈Pj ‖V j

i′‖
2
2

. For i /∈ P j , let qji = 0 and

rji = 0.
Set s = C0 · n1/2 max(α · β, d) · dε−2 log(n/ε) for a sufficiently large constant C0 > 0. Suppose

we independently sample each row i of A with probability pi = min(1,Θ(s ·
∑

j(q
j
i + rji ))) (the fact

that we choose Θ(s ·
∑

j(q
j
i + rji )) instead of s ·

∑
j(q

j
i + rji ) in the definition of pi will give us some

flexibility in designing a fast algorithm, as we will see).
For i ∈ [n], let w′i = 0 if we do not sample row i, and otherwise w′i = wi/pi. The expected

number of non-zero elements of w′ is O(s log n). This is because for each of the O(log n) possibilities
of j,

∑
i q
j
i + rji = O(1). Note that if w′i 6= 0, then w′i ≥ 1. Moreover, by a union bound over the

n coordinates, with probability 1− 1/nC we have ‖w′‖∞ ≤ nC+1‖w‖∞, since the probability that
any i for which pi ≤ 1/nC+1 is sampled is at most 1/nC .

Theorem 4 (Huber Embedding) With the notation defined above, for any fixed x ∈ Rd,

Pr[(1− ε)‖Ax‖H,w ≤ ‖Ax‖H,w′ ≤ (1 + ε)‖Ax‖H,w]

≥ 1− exp(−C2d log(n/ε)),

for an arbitrarily large constant C2 > 0.

Proof: Fix a vector x and define the non-negative random variable Xi = w′i · H(Aix). For
X =

∑n
i=1Xi, we have E[X] =

∑n
i=1 pi(wi/pi)H(Aix) = ‖Ax‖H,w.

We will use the following version of the Bernstein inequality.

Fact 5 ([33, 5]) Let {Xi}ni=1 be independent random variables with E[X2
i ] < ∞ and Xi ≥ 0. Set

X =
∑

iXi and let γ > 0. Then,

Pr[X ≤ E[X]− γ] ≤ exp

(
−γ2

2
∑

i E[X2
i ]

)
.

If Xi −E[Xi] ≤ ∆ for all i, then with σ2
i = E[X2

i ]−E[Xi]
2 we have

Pr[X ≥ E[X] + γ] ≤ exp

(
−γ2

2
∑

i σ
2
i + 2γ∆/3

)
.

If for some i we have pi = 1, then E[Xi] = Xi = wiH(Aix). It follows that such Xi do not
contribute to the deviation of X from E[Xi], and therefore we can apply Fact (5) only to those Xi

for which pi < 1.
In order to apply Fact (5), we first bound H(Aix)/pi, for the case when pi < 1, by a case

analysis. Suppose i ∈ P j . We use Lemma 3 to do the case analysis.

Case |Aix| ≥ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖1). It follows that

H(Aix)

pi
=
|Aix| − τ/2

pi
≤ |Aix|

pi
≤ |Aix|

Θ(s)qji
=

|Aix|α
Θ(s)‖U ji ‖1

≤
‖U ji ‖1‖J jx‖∞α

Θ(s)‖U ji ‖1
≤ αβ‖Ajx‖1

Θ(s)

≤
αβO(n1/2)‖Ajx‖H

s
=

O(‖Ajx‖H)

C0ε−2d log(n/ε)
.
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Case |Aix| ≥ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖22/(2τ)). We claim in this case that ‖Ajx‖H =

Ω(n−1/2‖Ajx‖1) as well. Suppose not, so that ‖A
jx‖1

‖Ajx‖H
= ω(n1/2).

Let S ⊆ [n] be the set of ` ∈ [n] for which |(Ajx)`| ≥ τ . Then ‖(Ajx)S‖H ≥ ‖(Ajx)S‖1/2.
Hence,

ω(n1/2) =
‖Ajx‖1
‖Ajx‖H

=
‖(Ajx)S‖1 + ‖(Ajx)[n]\S‖1

‖Ajx‖H

≤ 2 +
‖(Ajx)[n]\S‖1
‖Ajx‖H

,

so that ‖(Ajx)[n]\S‖1 = ω(n1/2)‖Ajx‖H .
Given a value of ‖(Ajx)[n]\S‖1, the value ‖(Ajx)[n]\S‖22 is minimized when all of the coordinates

are equal:

‖(Ajx)[n]\S‖H ≥ n ·

(
‖(Ajx)[n]\S‖1

n

)2

/(2τ)

=
‖(Ajx)[n]\S‖21

2τn
.

Note also that ‖(Ajx)S‖H ≥ τ/2 since there exists an i for which |Aix| ≥ τ given that we are in
this case.

So in order for the condition that ‖(Ajx)[n]\S‖1 = ω(n1/2)‖Ajx‖H , it must be the case that

‖(Ajx)[n]\S‖1 = ω(n1/2) ·

(
τ +
‖(Ajx)[n]\S‖21

2τn

)
.

The right hand side of this expression is minimized when τ2 =
‖(Ajx)[n]\S‖21

2n , which implies Θ(τ2n) =
‖(Ajx)[n]\S‖21, or equivalently, ‖(Ajx)[n]\S‖1 = Θ(τ

√
n). But then we have

Θ(τ
√
n) = ‖(Ajx)[n]\S‖1 = ω(n1/2) · 2τ,

which is a contradiction. Hence, ‖Ajx‖H = Ω(n−1/2‖Ajx‖1), and this case reduces to the first case.

Case |Aix| ≤ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖1). It follows that

H(Aix)

pi
=

(Aix)2

2τpi
≤ τ |Aix|

2τpi
=
|Aix|
2pi

,

using that |Aix| ≤ τ . Now we have the same derivation as in the first case, up to a factor of 2.

Case |Aix| ≤ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖22/(2τ)). It follows using the properties of V j
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that

H(Aix)

pi
=

(Aix)2

2τpi
≤ (Aix)2

τΘ(s)rji
≤ (Aix)2O(d)

τs‖V j
i ‖22

≤
‖V j

i ‖22‖Kjx‖22O(d)

τs‖V j
i ‖22

≤ ‖A
jx‖22O(d)

τs

≤
O(d)τn1/2‖Ajx‖H

τs

=
O(‖Ajx‖H)

C0ε−2d log(n/ε)
.

Hence, in all cases, if i ∈ P j then

H(Aix)

pi
≤

‖Ajx‖H
C1ε−2d log(n/ε)

for an arbitrarily large constant C1 > 0. Then,

Xi −E[Xi] ≤ Xi ≤
wiH(Aix)

pi
≤

wi‖Ajx‖H
C1ε−2d log(n/ε)

.

Moreover, using the notation of Fact (5),∑
i:pi<1

σ2
i ≤

∑
i:pi<1

E[X2
i ]

=
∑
j

∑
i:pi<1, i∈P j

wiH(Aix)
wiH(Ajix)

pi

≤
∑
j

‖Ajx‖H,w
C1ε−2d log(n/ε)

·
∑

i:pi<1, i∈P j

wiH(Aix)

≤
∑
j

‖Ajx‖2H,w
C1ε−2d log(n/ε)

≤
‖Ax‖2H,w

C1ε−2d log(n/ε)
.

Setting γ = ε‖Ax‖H,w, and applying Fact (5),

Pr[‖Ax‖H,w′ ≤ ‖Ax‖H,w − γ]

≤ exp

(
−γ2C1ε

−2d log(n/ε)

2(‖Ax‖H,w)2

)
≤ exp(−C2d log(n/ε)),

and also

Pr[‖Ax‖H,w′ ≥ ‖Ax‖H,w + γ]

≤ exp

 −γ2

2
(‖Ax‖H,w)2

C1ε−2d log(n/ε)
+ 2

3γ
‖Ax‖H,w

C1ε−2d log(n/ε)


≤ exp(−C2d log(n/ε)),
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where C2 > 0 is a constant that can be made arbitrarily large by choosing C0 > 0 arbitrarily
large.

We now combine Theorem 4 with a net argument for the Huber measure. We will use those
arguments in Section 4. To do so, we need the following lemma.

Lemma 6 (Huber Growth Condition) The function H(a) satisfies the growth condition (1) with
α = 2 and CG = 1.

Proof: We prove this by a case analysis. We can assume a and a′ are positive since the inequality
only depends on the absolute value of these quantities. For notational convenience, let C ≡ a/a′.
If a = a′, the lemma is immediate, so assume C > 1.

First suppose a′ ≥ τ . Then H(a)/H(a′) = (Ca′ − τ/2)/(a′ − τ/2), which is maximized when
a′ = τ , yielding (C − 1/2)/(1/2) = 2C − 1. Since 2C − 1 ≤ C2 for C ≥ 1, the left inequality of (1)
holds. Conversely, H(a)/H(a′) is at least C, and so the right inequality of (1) holds.

Next suppose a ≥ τ and a′ < τ . Then

H(a)/H(a′) = (Ca′ − τ/2)/((a′)2/(2τ))

= 2τC/a′ − τ2/(a′)2.

Then
d(H(a)/H(a′))

da′
= −2τC/(a′)2 + 2τ2/(a′)3,

and setting this equal to 0 we find that a′ = τ/C maximizes H(a)/H(a′). In this case H(a)/H(a′) =

C2, and so the left inequality of (1) holds. Since a ≥ τ , τ > a′ ≥ τ/C, and since d(H(a)/H(a′))
da′ < 0

for a′ ∈ (τ/C, τ ], H(a)/H(a′) is minimized when a′ = τ , in which case it equals 2C − 1. Since
2C − 1 ≥ C for C ≥ 1, the right inequality of (1) holds.

Finally, suppose a < τ . In this case

H(a)/H(a′) = a2/(a′)2 = C2,

and the left inequality of (1) holds, and the right inequality holds as well.

2.1 Proof of Theorem 2, Huber algorithm running time.

Proof: We first solve the least squares regression problem minx ‖Ax−b‖2 in O(nnz(A))+poly(d/ε)
time using [9] up to a factor of 1 + ε. This step succeeds with probability 1 − o(1). Suppose
y′ = Ax′ − b realizes this minimum. Let c = ‖y′‖2/(1 + ε). Then by Lemma 27 as we will see in
our net argument in §4, applied to w = 1n, if y∗ = Ax∗ − b, where x∗ = argminx‖Ax− b‖H , then
c ≤ ‖y∗‖2 ≤ κcn3/2, where κ > 0 is a sufficiently large constant.

To apply Theorem 4 with w = 1n first note that all weights wi are in the same group P 1. We
then need to be able to compute the sampling probabilities q1

i and r1
i , but only up to a constant

factor since pi = min(1,Θ(s · (q1
i + r1

i ))). Recall, q1
i =

‖U1
i ‖1
α and let ri =

‖V 1
i ‖22∑d

i=1 ‖V 1
i ‖22

, where U1
i

and V 1
i denote the i-th row of U1 and V 1, respectively. Here U1 is an (α, β)-well-conditioned basis

for A with respect to `1, meaning U1 has the same column span as A,
∑d

i=1 |U1
i |1 = α, and for

all x, ‖x‖∞ ≤ β‖U1x‖1. By Lemma 49 and Theorem 50 of [9] (see also [34, 41]), the q1
i can be
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computed in O(nnz(A) log n)+poly(d/ε) time, for a U1 with α, β ≤ poly(d). Similarly, by Theorem
29 of [9], in O(nnz(A) log n) + poly(d/ε) time we can compute the ri, for a matrix V 1 for which∑

i ‖V 1
i ‖22 = Θ(d) and for all x, ‖V 1x‖ = (1 ± 1/2)‖x‖2. These steps succeed with probability

1− 1/ logC n probability for arbitrarily large constant C > 0.
The vector w′ in Theorem 4 can be computed in O(n) time, and the expected number of non-

zero entries of w′ is O(s log n) = O(n1/2 max(α · β, d) · ε−2d log(n/ε) log n) = n1/2(log2 n)poly(d/ε),
and so with probability 1− o(1), we will have nnz(w′) ≤ n1/2(log2 n)poly(d/ε).

Let T be the sparse subspace embedding of [9], so that with probability 1 − o(1), ‖TAx‖2 =
(1± ε)‖Ax‖2 for all x and TA can be computed in nnz(A) time and T has poly(d/ε) rows.

Now consider the regression problem minx ‖Ax−b‖H,w′ subject to the constraint ‖TAx−Tb‖2 ≤
2κcn3/2. This 2-norm constraint is needed to ensure that we satisfy the conditions needed to apply
Lemma 28 in our net argument in §4. By a union bound, Theorem 4 holds simultaneously for all
points in a net N of size (n/ε)O(d). This step succeeds with probability 1 − o(1). Moreover, since
w′i = wi/pi with probability pi (and zero otherwise), by a union bound the probability that a pi of
a nonzero w′i is less than 1/n2 is at most n/n2 = 1/n, so with probability 1 − o(1), ‖w′‖∞ ≤ n2,
implying ‖Ax− b‖H,w′ ≤ n2‖Ax− b‖H for all x.

Hence, we can apply Lemma 28 with S equal to the identity and our choice of w′ (together
with the input constant 2κ) to conclude, by a union bound that with probability 1 − o(1), if
x∗ = argminx‖Ax−b‖H,w′ subject to the constraint ‖TAx∗−Tb‖2 ≤ 2κcn3/2, then ‖Ax∗−b‖H,w ≤
(1 + ε) minx ‖Ax− b‖H,w.

Thus, we have reduced the original regression problem to the regression problem minx ‖Ax −
b‖H,w′ constrained by ‖TAx−Tb‖2 ≤ 2κcn3/2, where w′ has n1/2 log2 n ·poly(d/ε) non-zero entries.
We now repeat this procedure recursively O(1) times. Let w0 = 1n and w1 = w′. In the `-th
recursive step, ` ≥ 2, we are given the regression problem minx ‖Ax − b‖H,w`−1

subject to the

constraint ‖TAx − Tb‖2 ≤ 2κcn3/2+2`−2 (we use the same matrix T in all steps), and we reduce
the problem to solving minx ‖Ax− b‖H,w`

subject to the constraint ‖TAx− Tb‖2 ≤ 2κcn3/2+2`−2.
We now describe the `-th recursive step.

We inductively have that ‖w`−1‖∞ ≤ n2`−2. We first group the weights of w`−1 into O(log n)
groups P j . For each group we compute U ji and V j

i as above, thereby obtaining w` in O(t`−1 log n)
expected time, where t`−1 is the number of non-zero weights in w`−1. The expected value of t` is

O(t
1/2
`−1 max(α·β, d)·ε−2d log(n/ε) log n). We can condition on t`−1 being O(n1/2`−1

poly(dε−1 log n))

as all events jointly succeed with probability 1−o(1). We thus have t` = n1/2`poly(dε−1 log n) with
probability 1 − o(1). We now consider the regression problem minx ‖Ax − Ab‖H,w`

subject to the
constraint ‖TAx− Tb‖2 ≤ 2κcn3/2‖w`−1‖∞ ≤ 2κcn3/2+2`−2. By a union bound, Theorem 4 holds
simultaneously for all points in a net N of size (n/ε)O(d), this step succeeding with probability
1 − o(1). Moreover, the w′ in Theorem 4 is equal to w` and satisfies ‖w`‖∞ ≤ n2‖w`−1‖∞ ≤ n2`.
We can thus apply Lemma 28 with S equal to the identity to conclude that with probability
1 − o(1), if x∗ = argminx‖Ax − b‖H,w`

subject to the constraint ‖TAx∗ − Tb‖2 ≤ 2κcn3/2+2`−2,
then ‖Ax∗ − b‖H,w`−1

≤ (1 + ε) minx ‖Ax− b‖H,w`−1
.

It follows that for ` a large enough constant, and by scaling ε by a constant factor, we will have
that with probability 1−o(1), if x∗ = argminx‖Ax−b‖H,w`

subject to the constraint ‖TAx∗−Tb‖2 ≤
2κcn3/2+2`−2, then ‖Ax∗ − b‖H ≤ (1 + ε) minx ‖Ax − b‖H . Moreover, t` ≤ n1/2`poly(dε−1 log n).
This resulting problem is that of minimizing a convex function subject to a convex constraint and
can be solved using the ellipsoid method in tC` time for a fixed constant C > 0. Setting 2` > C/2
and assuming the poly(dε−1 log n) factor is at most n1/2 gives us a running time of O(n) to solve
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this last recursive step of the problem. The overall running time of the recursion is dominated by
the time to compute the U j and V j in the different recursive levels, which itself is dominated by the
top-most level of recursion. This gives an overall running time of O(nnz(A) log n) + poly(d/ε).

3 M-sketches for M-estimators.

Given a function G : R 7→ R+ with G(a) = G(−a), and G(0) = 0, we can use the sketch of z ∈ Rn
to estimate ‖z‖G ≡

∑
pG(zp), assuming G is monotone and satisfies the growth upper and lower

bounds of (1).
(Perhaps a more consistent notation would define the measure based on G as G−1(‖z‖G),

by analogy with `p norms. Moreover, ‖z‖G does not in general satisfy the properties of a norm.
However, if G is convex, then ‖y‖G is a convex function of z, and if also G−1(‖z‖G) is scale-invariant,
so that G−1(‖tz‖G) = |t|G−1(‖z‖G), then G−1(‖z‖G) is a norm.)

The sketch. We use an extension of COUNT-SKETCH, which has been shown to be effective for
subspace embeddings [9, 36, 34]. In that method, for a vector z ∈ Rn, each coordinate zp is mapped
via a hash function from [n] to one of N hash buckets, written as gp ∈ [N ] for p ∈ [n]; a coordinate
is generated for bucket g ∈ [N ] as

∑
gp=g Λpzp, where Λp = ±1 is chosen independently at random

with equal probability for +1 and −1. The resulting N -vector has approximately the same `2 norm
as z.

Here we employ also sampling of the coordinates, as done in the context of estimating earthmover
distance in [40], where each coordinate zp is mapped to a level hp, and the number of coordinates
mapped to level h is exponentially small in h: for an integer branching factor b > 1, we expect
the number of coordinates at level h to be about a b−h fraction of the coordinates. The number
of buckets at a given level is N = bcm, where integers m, c > 1 are parameters to be determined
later.

Our sketching matrix implementing this approach is S ∈ RNhmax×n, where hmax ≡ blogb(n/m)c,
and our scaling vector w ∈ RNhmax . The entries of S are Sj,p ← Λp, and the entries of w are
wj ← βbhp , where β ≡ (b− b−hmax)/(b− 1), j ← gp +Nhp, and

Λp ← ±1 with equal probability

gp ∈ [N ] chosen with equal probability

hp ← h with probability 1/βbh for int h ∈ [0, hmax],

(6)

all independently. Let Lh be the multiset {zp | hp = h}, and Lh,i the multiset {zp | hp = h, gp = i};
that is, Lh is multiset of values at a given level, Lh,i is the multiset of values in a bucket. We can
write ‖Sz‖G,w as

∑
i∈[N ],h∈[0,hmax] βb

hG(‖Lh,i‖Λ), where ‖L‖Λ denotes |
∑

zp∈L Λpzp|.
(The function ‖‖Λ is a semi-norm (if we map sets back to vectors), with ‖L‖Λ ≤ ‖L‖1,

EΛ[‖L‖2Λ] = ‖L‖22, and all (EΛ[‖L‖kΛ])1/k within constant factors of ‖L‖2, by Khintchine’s in-
equality.)

Regression theorem. Our main theorem of this section states that M -sketches can be used for
regression.
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Theorem 7 (Input Sparsity Time Regression for G-functions) Let OPTG ≡ minx∈Rd ‖Ax− b‖G.
There is an algorithm that in nnz(A) + poly(d log n) time, with constant probability finds x̂ such
that ‖Ax̂− b‖G ≤ O(1)OPTG.

The proof is deferred to §4.1; it requires a net argument, Lemma 28; the contraction bound Theo-
rem 19 from §3.5; and from §3.6, a clipped variant Theorem 23 of the dilation bound Theorem 22.
First, various definitions, assumptions, and lemmas will be given.

3.1 Preliminary Definitions and Lemmas for M-estimators.

We will analyze the behavior of sketching on z ∈ Rn. We assume that ‖z‖G = 1; this is for
convenience of notation only, the same argument would apply to any particular value of ‖z‖G (we
do not assume scale-invariance of G).

Define y ∈ Rd by yp = G(zp), so that ‖y‖1 = ‖z‖G = 1. A large part of our analysis will be
related to y, although y does not appear in the sketch. Let Z denote the multiset comprising the
coordinates of z, and let Y denote the multiset comprising the coordinates of y. For Ẑ ⊂ Z, let
G(Ẑ) ⊂ Y denote {G(zp) | zp ∈ Ẑ}.

Let ‖Y ‖k denote [
∑

y∈Y |y|k]1/k, so ‖Y ‖1 = ‖y‖1.
Hereafter multisets will just be called “sets”.

Weight classes. For our analysis, fix γ > 1, and for integer q ≥ 1, let Wq denote weight class
{yp ∈ Y | γ−q ≤ yp ≤ γ1−q}.

We have βbh E[‖G(Lh) ∩Wq‖1] = ‖Wq‖1.
For a set of integers Q, let WQ denote ∪q∈QWq.

Defining qmax and h(q). For given ε > 0, consider y′ ∈ Rd with y′i ← yi when yi > ε/n, and
y′i ← 0 otherwise. Then ‖y′‖1 ≥ 1 − n(ε/n) = 1 − ε. Thus for some purposes we can neglect Wq

for q > qmax ≡ logγ(n/ε), up to error ε. Moreover, we can assume that ‖Wq‖1 ≥ ε/qmax, since the
total contribution of weight classes of smaller total weight to ‖y‖1 is at most ε.

Let h(q) denote blogb(|Wq|/βm)c for |Wq| ≥ βm, and zero otherwise, so that

m ≤ E[|G(Lh(q)) ∩Wq|] ≤ bm

for all Wq except those with |Wq| < βm, for which the lower bound does not hold.
Since |Wq| ≤ n for all q, we have h(q) ≤ blogb(n/βm)c = hmax.

3.2 Assumptions About the Parameters.

There are many minor assumptions about the relations between various numerical parameters;
some of them are collected here for convenience of reference. Recall that N = bcm.

Assumption 8 We will assume b ≥ m, b > c, m = Ω(log log(n/ε)), log b = Ω(log log(n/ε)),
γ ≥ 2 ≥ β, an error parameter ε ∈ (0, 1/3), and logN ≤ ε2m. We will consider γ to be fixed
throughout, that is, not dependent on the other parameters.
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3.3 Distribution into Buckets.

The entries of y are well-distributed into the buckets, as the following lemmas describe.

Lemma 9 For ε ≤ 1, with failure probability at most 4qmaxhmax exp(−ε2m/3) ≤ C−ε
2m for a

constant C > 1, the event E holds, that for all q ≤ qmax with |Wq| ≥ βm, and all h ≤ h(q), that

|G(Lh) ∩Wq| = β−1b−h|Wq|(1± ε),

and
‖G(Lh) ∩Wq‖1 = β−1b−h‖Wq‖1(1± ε).

Here a = b(1± ε) means that |a− b| ≤ ε|b|.
We will hereafter generally assume that E holds.

Proof: Let s ≡ |Wq|. When s ≥ βm and h ≤ h(q), in expectation |G(Lh) ∩Wq| is equal to
µ ≡ s/βbh ≥ m, and ‖G(Lh) ∩Wq‖1 ≥ ‖Wq‖1/βb

h. We need that with high probability, deviations
from these bounds are small.

Applying Bernstein’s inequality to the random variable Z with binomial B(s, 1/βbh) distribu-
tion, the logarithm of the probability that t ≡ Z −E[Z] = Z − µ exceeds εµ is at most

−(εµ)2/2

µ+ (εµ)/3
≤ −ε2µ/3 ≤ −ε2m/3.

Taking the exponential, and using a union bound over all events (including the event that−t exceeds
εs/βbh) completes the first claim, with half the claimed failure probability, using Assumption 8
to shown that the claimed C exists. For the second claim, there is a similar argument for the
random variables Xp which are equal to yp when hp = h and yp ∈ Wq, and zero otherwise. Here∑

p E[X2
p ] ≤

∑
p E[Xp] = ‖Wq‖1/βb

h.

Lemma 10 For h ∈ [hmax], suppose Q ⊂ {q | h(q) = h, |Wq| ≥ βm}, and Ŵ ⊂ Y contains
WQ ≡ ∪q∈QWq. If |G(Lh)∩Ŵ | ≤ εN , then with failure probability at most 2|Q| exp(−ε2m/3), each
Wq has W ∗q ⊂ G(Lh) ∩Wq with |W ∗q | ≥ (1 − ε)β−1b−h|Wq|, and where each entry of W ∗q is in a

bucket with no other element of Ŵ . Also if condition E of Lemma 9 holds, then

‖W ∗q ‖1 ≥ (1− 4γε)β−1b−h‖Wq‖1.

Proof: We will show that for q ∈ Q, with high probability it will hold that aq ≥ (1 −
ε))β−1b−h|Wq|, where aq is the number of buckets G(Lh,i), over i ∈ [N ], containing a member

of Wq, and no other members of Ŵ .
Consider each q ∈ Q in turn, and the members of Wq in turn, for k = 1, 2, . . . s ≡ |Wq|, and

let Zk denote the number of bins occupied by the first k members of Wq. The probability that
Zk+1 > Zk is at least β−1b−h(1−|G(Lh)∩Ŵ |/N) ≥ β−1b−h(1−ε). We have aq ≥ (1−ε)β−1b−h|Wq|
in expectation.

To show that this holds with high probability, let Ẑk ≡ E[Zs | Zk]. Then Ẑ1, Ẑ2, . . . is a
Martingale with increments bounded by 1, and with the second moment of each increment at
most β−1b−h. Applying Freedman’s inequality gives a concentration for aq similar to the above
application of Bernstein’s inequality, yielding a failure probability 2 exp(−ε2m/3),
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Applying a union bound over all |Q| yields that with probability at least 1−2|Q| exp(−ε2m/3),
for each Wq there is W ∗q of size at least (1 − ε)β−1b−h|Wq| such that each member of W ∗q is in a

bucket containing no other member of Ŵ .
For the last claim, we compare the at least (1 − ε)X entries of W ∗q , where X ≡ β−1b−h|Wq|,

with the at most (1 + ε)X − |W ∗q | entries of G(Lh) ∩Wq not in W ∗q , using condition E ; we have

‖W ∗q ‖1
‖G(Lh) ∩Wq‖1

≥ (1− ε)Xγ−q

(1− ε)Xγ−q + 2εXγ1−q

≥ 1− 2γε/(1− ε).

Using condition E again to make the comparison with ‖Wq‖1, the claim follows.

Lemma 11 For h ∈ [hmax], W̄ ⊂ G(Lh), T ≥ ‖W̄‖∞, and δ ∈ (0, 1), if

N ≥
6‖W̄‖1

T log(N/δ)
,

then with failure probability δ,

max
i∈[N ]

‖G(Lh,i) ∩ W̄‖1 ≤
7

6
T log(N/δ).

Proof: This directly follows from Lemma 2 of [9], (which follows directly from Bernstein’s
inequality), where t of that lemma is N , T is the same, us:n is W̄ , r is ‖W̄‖1, and δh is δ. The

bound for N also uses ‖W̄‖22 ≤ ‖W̄‖∞‖W̄‖1.

3.4 Leverage Scores.

The `2 leverage scores u ∈ Rn have ui ≡ ‖Ui:‖22, where U is an orthogonal basis for the columnspace
C(A) ≡ {Ax | x ∈ Rd}. We will use the standard facts that these values satisfy ‖u‖∞ ≤ 1 and
‖u‖1 ≤ d, and for y ∈ C(A) with ‖y‖2 = 1, y2

i ≤ ui for i ∈ [n].
We will condition on a likely event involving the top leverage scores. This lemma will be used

to bound the effect of those Wq with |Wq| small and weight γ−q large.

Lemma 12 For A ∈ Rn×d, let u ∈ Rn denote the `2 leverage score vector of A. For N1, N2 with
N2 ≥ N1 and with N1N2 ≤ κN , for κ ∈ (0, 1/2), let Y1 and Y2 denote the sets of indices of the N1

and N2 largest coordinates of u, so that Y1 ⊂ Y2. Then with probability at least 1 − 2κ, the event
Ec holds, that S sends each member of Y1 into a bucket containing no other member of Y2.

We will hereafter generally assume that Ec holds.

Proof: For each member of Y2, the expected number of members of Y1 colliding with it, that is,
in the same bucket with it, is N1/N . The expected number of such collisions is therefore at most
N1N2/N < κ. The probability that the number of collisions is at least twice its mean is at most
2κ, so with probability at least 1−2κ, the number of collisions is less than 2κ < 1, that is, zero.

We use the `2 leverage scores to bound the coordinates of G(z); this is the one place in proving
contraction bounds that we need the linear lower bound of (1) on the growth of G.
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Lemma 13 If up is the k’th largest `2 leverage score, then for z ∈ C(A), G(zp) ≤
√

2d/k‖z‖G/CG.

Here CG is the growth parameter from (1).

Proof: We have up ≤ d/k, since
∑

i ui = d. For z = Ux ∈ C(A),

z2
p ≤ (Up∗x)2 ≤ ‖Up∗‖2‖x‖2 = up‖z‖2 ≤ (d/k)‖z‖2.

That is,
∑

q z
2
q/z

2
p ≥ k/d. Suppose

∑
zq≤zp z

2
q/z

2
p ≥ k/2d. Then

∑
zq≤zp

G(zq)

G(zp)
≥
∑
zq≤zp

∣∣∣∣zqzp
∣∣∣∣α ≥ ∑

zq≤zp

∣∣∣∣zqzp
∣∣∣∣2 ≥ k/2d,

and the claimed inequality follows. Otherwise,
∑

zq≥zp z
2
q/z

2
p ≥ k/2d, which implies

∑
zq≥zp

G(zq)

G(zp)
≥ CG

∑
zq≥zp

∣∣∣∣zqzp
∣∣∣∣ ≥ CG

 ∑
zq≥zp

∣∣∣∣zqzp
∣∣∣∣2
1/2

≥ CG
√
k/2d,

and the claimed inequality follows.

3.5 Contraction bounds.

Here we will show that ‖Sz‖G,w is not too much smaller than ‖z‖G.

3.5.1 Estimating ‖z‖G using Sz.

For v ∈ T ⊂ Z, let T − v denote T \ {v}.

Lemma 14 For v ∈ T ⊂ Z,

G(‖T‖Λ) ≥
(

1−
‖T − v‖Λ
|v|

)2

G(v),

and if G(v) ≥ ε−1‖T − v‖G, then
‖T − v‖2
|v|

≤ ε1/α, (7)

and for a constant C, EΛ[G(‖T‖Λ)] ≥ (1− Cε1/α)G(v).

Proof: For the first claim, if ‖T‖Λ ≥ |v|, then the claim is immediate since G is non-decreasing.
Otherwise, note that ‖T‖Λ has the form | |v| ± ‖T − v‖Λ|, so if ‖T‖Λ ≤ |v|, then ‖T‖Λ = | |v| −
‖T − v‖Λ|. We have

G(‖T‖Λ)

G(v)
≥
(
‖T‖Λ
|v|

)α
≥
(
‖T‖Λ
|v|

)2

=

(
|v| − ‖T − v‖Λ

|v|

)2

=

(
1−
‖T − v‖Λ
|v|

)2

,
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proving the first claim. For the second claim, we have |v′| < |v| for v′ ∈ T − v, since G(v′) ≤
‖T − v‖G ≤ εG(v), and G is non-decreasing in |v|. Therefore

ε ≥
‖T − v‖G
G(v)

=
∑

v′∈T−v

G(v′)

G(v)

≥
∑

v′∈T−v

(
|v′|
|v|

)α
≥

∑
v′∈T−v

(
|v′|
|v|

)2

and so (7) follows. For the third claim, we have from the first claim,

EΛ[G(‖T‖Λ)] ≥ EΛ

[(
1−
‖T − v‖Λ
|v|

)2
]
G(v)

≥
(

1− 2
EΛ[‖T − v‖Λ]

|v|

)
G(v).

Using the Khintchine inequality and (7), we have

EΛ[‖T − v‖Λ]

|v|
≤
C‖T − v‖2
|v|

≤ Cε1/α,

for a constant C, so the claim follows, after adjusting constants.

We will need a lemma that will allow bounds on the contributions of the weight classes. First,
some notation. For h = 0 . . . hmax, let

Q̂h ≡ {q | h(q) = h, |Wq| ≥ βm}
M≥ ≡ logγ(2(1 + 3ε)b/ε)

Qh ≡ {q ∈ Q̂h | q ≤M≥ + min
q∈Q̂h

q}

M< ≡ logγ(m/ε) = O(logγ(b/ε))

Q< ≡ {q | |Wq| < βm, q ≤M<}
Q∗ ≡ Q< ∪ [∪hQh].

(8)

Here Q̂h gives the indices of Wq that are “large” and have h as the level at which between m and
bm members of Wq are expected in Lh. The set Qh cuts out the weight classes that can be regarded
as negligible at level h.

Lemma 15 Using Assumption 8 and assuming condition E of Lemma 9,
∑

q∈Q∗ ‖Wq‖1 ≥ 1− 5ε.

Proof: The total weight of those weight classes with |Wq| ≤ βm and q > M< is at most

βm
∑
q>M<

γ1−q ≤ βm(ε/m)γ
∑
g>0

γ−q ≤ εβ/(1− 1/γ) ≤ 4ε,

for γ ≥ 2 and β ≤ 2.
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For given h > 0, let q∗h ≡ minq∈Q̂h
q. The ratio of the total weight of classes in Q̂h \ Qh to

‖Wq∗h
‖

1
is at most

1

(1− ε)γ−q∗hm
γ−q

∗
h−M≥

∑
q>0

(1 + ε)bmγ1−q

= b
ε

2b(1 + 3ε)

1 + ε

1− ε
∑
q≥0

γ−q

=
ε

2(1 + 3ε)

1 + ε

1− ε
1

1− 1/γ

≤ ε,

under the assumptions on γ and ε. So
∑

h ‖WQ̂h\Qh
‖

1
≤
∑

h ε‖Wq∗h
‖

1
≤ ε.

Putting together the bounds for the two cases, the total is at most 5ε, as claimed.

Lemma 16 Assume that condition E of Lemma 9 holds, and that condition Ec of Lemma 12 holds
for N1 = N2 = O(C−2

G ε−2dm2). Let Q′h ≡ {q | q ≤ M ′h}, where M ′h ≡ logγ(βbh+1m2qmax). Then

there is N = O(N2
1 +m2bε−1qmax) so that with probability at least 1−C−ε2m for a constant C > 1,

for each q ∈ Q∗, there is W ∗q ⊂ Lh(q) ∩Wq such that:

1. |W ∗q | ≥ (1− ε)β−1b−h(q)|Wq|;

2. each x ∈W ∗q is in a bucket with no other member of WQ∗;

3. ‖W ∗q ‖1 ≥ (1− 4γε)β−1b−h‖Wq‖1.

4. for q ∈ Qh, each x ∈W ∗q is in a bucket with no member of WQ′h
;

Proof: There is N1 satisfying the given bound so that Lemma 13 implies that y /∈ Y1 must be
smaller than C−1

G

√
2d/N1 ≤ ε/m, and therefore not in Wq for q ∈ Q<. Therefore WQ< ⊂ Y1, and

with the assumption of condition Ec, no member of WQ< is in the same bucket as any other member
of that set. We will take W ∗q ←Wq for q ∈ Q<.

For each h, apply Lemma 10 to Qh and with Ŵ ← WQ∗ ≡ WQ< ∪q∈Qh
Wq, so that, using

condition E ,

|G(Lh) ∩ Ŵ | ≤M<βm+M≥(1 + ε)bm

= O(mb logγ(b/ε)).

To apply Lemma 10, we need N > ε−1|G(Lh) ∩ Ŵ |, and large enough N in O(mbε−1 logγ(b/ε))
suffices for this. We have (1) and (2), with failure probability 2M≥ exp(−ε2m).

Condition (3) follows either trivially, for q ∈ Q<, or from Lemma 10.
For (4), let Ŵ ← WQh

∪WQ′h
. Since |WQ′h

|γ−M ′h ≤ ‖y‖1 ≤ 1, so that |WQ′h
| ≤ βbh+1m2qmax,

we have

|G(Lh) ∩ Ŵ | ≤ |G(Lh) ∩WQh
|+ |G(Lh) ∩WQ′h

|

≤ (1 + ε)bmM≥ + (1 + ε)β−1b−h|WQ′h
|

≤ O(bm2qmax),
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using condition E . Since |G(Lh) ∩ Ŵ | ≤ εN for large enough N = O(m2bε−1qmax), we can apply
Lemma 10 to obtain (4).

Lemma 17 Let G : R 7→ R+ as above. Assume that condition E of Lemma 9 holds, and As-
sumption 8, and that condition Ec of Lemma 12 holds for N1 = N2 = O(C−2

G ε−2dm2). There is
N = O(N2

1 + ε−2m2bqmax), so that for h ∈ [hmax] and q ∈ Qh with ‖Wq‖1 ≥ ε/qmax, we have∑
yp∈W ∗q

G(‖L(yp)‖Λ) ≥ (1− ε1/α)‖Wq‖1

with failure probability at most C−ε
2m for fixed C > 1.

Proof: For any q ∈ Qh we have

|Wq| ≤ (1 + ε)βbh E[|G(Lh) ∩Wq|]
≤ (1 + ε)βbhbm

by condition E and the definition of h(q) = h; since

|Wq|γ1−q ≥ ‖Wq‖1 ≥ ε/qmax,

using ‖Wq‖1 ≥ ε/qmax from the lemma statement, we have for any yp ∈Wq,

yp ≥ γ−q ≥ (ε/qmax)/γ|Wq| ≥ ε/bh+1γβm(1 + ε)qmax. (9)

Condition 4 of Lemma 16 holds, since N1, N2, and N are large enough, and so we have that
no bucket containing yp ∈ W ∗q contains an entry larger than γ/βbh+1m2qmax, so if W̄ comprises

G(Lh) ∩ (Y \WQ′h
), we have ‖W̄‖∞ ≤ γ/βbh+1m2qmax. Using condition E , ‖W̄‖1 ≤ (1 + ε)b−h,

using just the condition ‖Y ‖1 = 1. Therefore the given N is larger than the O(bmε−2qmax) needed
for Lemma 11 to apply, with δ = exp(−ε2m). This with (9) yields that for each yp ∈ W ∗q , the
remaining entries in its bucket L have ‖L− yp‖1 ≤ 2γ2ε|yp|, with failure probability exp(−ε2m).

For each such isolated yp we consider the corresponding zp (denoted by v hereafter), and let
L(v) denote the set of z values in the bucket containing v. We apply Lemma 14 to v with L(v)
taking the role of T , and 2γ2ε taking the role of ε, obtaining EΛ[G(‖L(v)‖Λ)] ≥ (1− C ′ε1/α)G(v).
(Here we fold a factor of (2γ2)1/α into C ′, recalling that we consider γ to be fixed.) Using this
relation and condition E , we have

‖Wq‖1 ≤ βb
h‖W ∗q ‖1/(1− 4γε) from Lem 16.3

≤ βbh
∑

G(v)∈W ∗q

EΛ[G(‖L(v)‖Λ)]

(1− 4γε)(1− C ′ε1/α)
,

so the claim of the lemma follows, in expectation, after adjusting constants, and conditioned on
events of failure probability C−ε

2m for constant C.
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To show the tail estimate, we relate each G(‖L(v)‖Λ) to G(v) via the first claim of Lemma 14,
which implies G(‖L(v)‖Λ) ≥ (1− 2‖L(v)− v‖Λ/|v|)G(v). Writing V ≡ G−1(W ∗q ), we have∑

v∈V
G(‖L(v)‖Λ)

≥
∑
v∈V

‖L(v)‖Λ>|v|

G(v) +
∑
v∈V

‖L(v)‖Λ≤|v|

(
1− 2

‖L(v)− v‖Λ
|v|

)
G(v)

≥ ‖W ∗q ‖1 − 2
∑
v∈V

‖L(v)‖Λ≤|v|

‖L(v)− v‖Λ
|v|

γ1−q.

It remains to upper bound the sum. Since ‖L(v)‖Λ = ||v| ± t|, where t ≡ ‖L(v)− v‖Λ, if
‖L(v)‖Λ ≤ |v|, then t ≤ 2|v|.

Since
E[t | t ≤ 2|v|] ≤ E[t] ≤ C1‖L(v)− v‖2 ≤ C1C

′ε1/α|v|,

using Khintchine’s inequality and (7), and similarly E[t2|t ≤ 2|v|] ≤ C2(C ′ε1/α)2v2, we can use
Bernstein’s inequality to bound∑

v∈V
‖L(v)‖Λ≤|v|

‖L(v)− v‖Λ
|v|

γ1−q ≤
∑
v∈V

‖L(v)‖Λ≤|v|

C3ε
1/αγ1−q

≤ C4ε
1/α‖W ∗q ‖1,

with failure probability exp(−ε2m). Hence∑
v∈V

G(‖L(v))‖Λ)

≥ ‖W ∗q ‖1 − 2C4ε
1/α‖W ∗q ‖1

= ‖W ∗q ‖1(1− 2C4ε
1/α)

≥ β−1b−h‖Wq‖1(1− 4γε)(1− 2C4ε
1/α),

using condition E . Adjusting constants, the result follows.

Lemma 18 Assume that condition E of Lemma 9 holds, and Assumption 8, and Ec of Lemma 12
holds for large enough N1 = O(C−2

G ε−2dm2) and N2 = O(C−2
G d(ε2αm4+α + ε4α−4m2+2α)). Then

for q ∈ Q<, ∑
v∈G−1(Wq)

‖G(L(v))‖Λ ≥ (1− ε1/α)‖Wq‖1

with failure probability at most C−ε
2m for a constant C > 1.

Proof: For all yp ∈WQ< , we have

yp ≥
ε

m
.
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Let

γ′ ≡ min{ ε−α

3εαm2+α/2
,
ε2−2α

m1+α
},

so that N2 of the lemma statement is at least 2d/γ′2C2
G. Then condition Ec and Lemma 13 imply

that every member of Wq is in a bucket with no entry other than itself larger than γ′.
Assume for the moment that all hp = 0, that is, all values are mapped to level 0. We apply

Lemma 11 to h = 0, with δ ≡ exp(−ε2m) and with W̄ ≡ Y \ Y2, so that

‖W̄‖∞ ≤ γ
′ ≤ ε−α

3m2+α/2
=

(
1

ε1−1/α
√
m

)α ε

3m

1

ε2m
.

The result is that with large enough N = O(m1+α/2ε−2+α), and assuming logN ≤ ε2m, so that
log(N/δ) ≤ 2ε2m, we have for v with G(v) = yp ∈Wq,

‖G(L(v)) ∩ W̄‖1 ≤
7

6

(
1

ε1−1/α
√
m

)α 2ε

3m

≤
(

1

ε1−1/α
√
m

)α
|yp|,

that is,
‖L(v)− v‖G

G(v)
≤
(

1

ε1−1/α
√
m

)α
,

so that from (7), we have

‖L(v)− v‖22
v2

≤ ε2/α

ε2m
. (10)

Since

‖W̄‖∞ ≤
ε2−2α

m1+α
=

(
1

mε2−1/α

)α ε

m
,

we also have, for all v′ ∈ L(v)− v, and using that G(v) ≥ ε/m,∣∣∣∣v′v
∣∣∣∣ ≤ (G(v′)

G(v)

)1/α

≤ 1

mε2−1/α
. (11)

From (11), we have that the summands determining ‖L(v)− v‖Λ have magnitude at most
|v|ε1/α/ε2m. From (10), we have ‖L(v)− v‖22 is at most v2ε2/α/ε2m. It follows from Bernstein’s
inequality that with failure probability exp(−ε2m), ‖L(v)− v‖Λ ≤ ε1/α|v|. Applying the first claim
of Lemma 14, we have G(‖L(v)‖Λ) ≥ (1−2ε1/α)G(v), for all v ∈ G−1(W ∗q ), with failure probability
|Wq| exp(−ε2m). This implies the bound after adjusting constants.

We can remove the assumption that all hp = 0, because the bound on ‖L(v)− v‖Λ also holds
when splitting up into levels.

Combining these lemmas, we have the following contraction bound.

Theorem 19 Assume condition E of Lemma 9 holds, and Assumption 8, and condition Ec of
Lemma 12 holds for N1 = O(C−2

G ε−2dm2) and N2 = O(C−2
G d(ε2αm4+α + ε4α−4m2+2α)), with

N = O(N1N2 + ε−2m2bqmax). Then ‖Sz‖G,w ≥ ‖z‖G(1 − ε1/α), with failure probability no more

than C−ε
2m, for absolute C > 1.

23



Proof: (We note that c, b, and m can be chosen such that the relations among these quantities
and also N = cbm satisfy Assumption 8, up to the weak relations among m, b, and n/ε, which
ultimately will require that n is not extremely large relative to d.)

Recalling Q∗ from (8), let Q∗∗ ≡ {q | q ∈ Q∗, ‖Wq‖1 ≥ ε/qmax}. Assuming conditions E and Ec,
we have, with probability 1− C−ε2m,

‖Sz‖G,w =
∑
h,i

βbhG(‖Lh,i‖Λ) Def.

≥
∑

q∈Q∗∗,v∈W ∗q

βbh(q)G(‖L(v)‖Λ) Lem 16

≥
∑
q∈Q∗∗

βbh(q)(1− ε1/α)‖W ∗q ‖1 Lems 17, 18

≥
∑
q∈Q∗∗

(1− ε1/α)(1− 4γε)‖Wq‖1 Lem 16.

Using Lemma 15, ∑
q∈Q∗∗

‖Wq‖1 ≥ −qmax(ε/qmax) +
∑
q∈Q∗

‖Wq‖1 ≥ 1− 6ε.

Adjusting constants gives the result.

3.6 Dilation bounds.

We prove two bounds for dilation, where the first gives a dilation that is at most a log factor, and
the second gives a constant factor by using a different way to estimate distance based on the sketch.

3.6.1 Bound for ‖Sz‖G,w.

Our first bound for dilation is E[‖Sz‖G,w] = O(hmax)‖z‖G, which implies a tail bound via Markov’s
inequality; first, some lemmas.

Lemma 20 For T ⊂ Z, EΛ[G(‖T‖Λ)] ≤ CG(‖T‖2), for an absolute constant C.

Proof: Let L denote the event that ‖T‖Λ ≥ ‖T‖2. Here the expectation is with respect to Λ
only:

E[G(‖T‖Λ)]

= E[G(‖T‖Λ) | L ] P{L}+ E[G(‖T‖Λ) | ¬L ] P{¬L}

≤ E

[
‖T‖αΛ
‖T‖α2

G(‖T‖2) | L
]

P{L}+G(‖T‖2)

= E[‖T‖αΛ | L ] P{L}
G(‖T‖2)

‖T‖α2
+G(‖T‖2)

≤ E[‖T‖αΛ]
G(‖T‖2)

‖T‖α2
+G(‖T‖2)

≤ CG(‖T‖2),

for a constant C, where the last inequality uses Khintchine.
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Lemma 21 For T ⊂ Z, G(‖T‖2) ≤ ‖T‖G, and so EΛ[G(‖T‖Λ)] ≤ C‖T‖G.

Proof: Using the growth upper bound for G,

‖T‖G
G(‖T‖2)

=
∑
zp∈T

G(zp)

G(‖T‖2)

≥
∑
zp∈T

∣∣∣∣ zp
‖T‖2

∣∣∣∣α

≥
∑
zp∈T

∣∣∣∣ zp
‖T‖2

∣∣∣∣2
= 1.

The last claim follows from this and the previous lemma.

Theorem 22 Assuming condition E of Lemma 9, Eg,`,Λ[‖Sz‖G,w] = O(hmax)‖z‖G.

Proof: Note that for each level h,
∑

i EΛ[G(‖Lh,i‖Λ)] ≤ C‖Lh‖G, applying the previous lemma.
Since ‖Lh‖G = ‖G(Lh)‖1 = (1± ε)‖y‖1/βbh under assumption E , we have

Eg,`,Λ[‖Sz‖G,w]

=
∑
h

βbh
∑
i

EΛ[G(‖Lh,i‖Λ)]

≤
∑
h

βbh
∑
i

C(1 + ε)‖y‖1/βb
h

=
∑
h

∑
i

C(1 + ε)‖y‖1 = hmaxC(1 + ε)‖z‖G,

and the theorem follows, picking bounded ε.

3.6.2 Bound for a “clipped” version.

We can achieve a better dilation than O(hmax) = O(log(εn/d)) by ignoring small buckets, using a
subset of the coordinates of Sz, as follows: for a given sketch, our new estimate ‖Sz‖Gc,w of ‖z‖G
is obtained by adding in only those buckets in level h that are among the top

M∗ ≡ bmM≥ + βmM< = O(mb logγ(b/ε))

in Λ-semi-norm, recalling M≥ and M< defined in (8). That is,

‖Sz‖Gc,w ≡
∑
j

βbj
∑
i∈[M∗]

G(‖Lj,(i)‖Λ),

where Lj,(i) denotes the level j bucket with the i’th largest Λ-semi-norm among the level j buckets.
The proof of the bounded contraction of ‖Sz‖G,w, Theorem 19, only requires lower bounds on

‖G(Lh,i)‖Λ for those at most M∗ buckets on level h containing some member of W ∗q for q ∈ Q∗, for
the W ∗q defined in Lemma 16. Thus if the estimate of ‖Sy‖G,w uses only the largest such buckets
in Λ-norm, the proven bounds on contraction continue to hold, and in particular ‖Sz‖Gc,w ≥
(1− ε)‖Sz‖G,w.

Moreover, the dilation of ‖‖Gc,w is constant:
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Theorem 23 There is c = O(logγ(b/ε)(logb(n/m))) and b ≥ c, recalling N = mbc, such that

E[‖Sz‖Gc,w] ≤ C‖z‖G

for a constant C.

Proof: From Lemma 21, the contribution of level h satisfies

E[
∑
i

G(‖Lh,i‖Λ)] ≤ C‖Lh‖G = C‖G(Lh)‖1. (12)

We will consider the contribution of each weight class separately. The contribution of Wq at
h = h(q) is βbh‖G(Lh) ∩Wq‖1 ≤ ‖Wq‖1(1+ε), if all entries of Wq land among the top M∗ buckets;
otherwise the contribution will be smaller.

The expected contribution of Wq at h = h(q) − k for k > 0 is at most M∗|Lh,i∗ ∩Wq|γ1−q,
where Lh,i∗ contains the largest number of members of Wq among the buckets on level h. When
|G(Lh)∩Wq| ≥ N logN , |G(Lh,i∗)∩Wq| ≤ 4|G(Lh)∩Wq|/N , with failure probability at most 1/N .
(This follows by applying Bernstein’s inequality to the sum of random variables Xi, where Xi = 1
when the i’th element of Wq falls in a given bucket, and Xi = 0 otherwise, followed by a union bound
over the buckets.) At level h = h(q)−k, |G(Lh)∩Wq| ≥ bkm(1−ε), using assumption E of Lemma 9,
so to obtain bkm(1− ε) ≥ N logN it suffices that k ≥ 2 + 2 logb c ≥ logb(N log(N)/m(1− ε)), using
N = bcm, obtaining for those k a contribution for Wq is within a constant factor of

βbhM∗(4β−1b−h|Wq|/N)γ1−q ≤
O(logγ(b/ε))

c
‖Wq‖1,

using the bound on M∗ given above. Adding this contribution to that for k ≤ 2+2 logb c, we obtain
an overall bound for Wq and h < h(q) that is within a constant factor of (1+logb c+hmax

M∗

N )‖Wq‖1,
and therefore within a constant factor of ‖Wq‖1 under the given conditions on b and c.

For h = h(q) + k for k > 0, the expected size of G(Lh) ∩Wq is at most m/bk−1; this quantity
is also an upper bound for the probability that G(Lh) ∩ Wq is non-empty. Thus for the qmax

non-negligible sets Wq, by a union bound the event Es holds with failure probability δ, that all
Wq ∩ Lh(q)+k will be empty for large enough k = O(logb qmaxm/δ). For each q and k, condition E
implies that the contribution βbh

∑
i ‖G(Lh,i)‖Λ ≤ (1 + ε)‖Wq‖1, and so the total contribution is

C‖Wq‖1 logb qmaxm/δ, within a constant factor of ‖Wq‖1, under given conditions.

Note that if G is convex, then so is ‖Sz‖Gc,w, since at each level we are applying a Ky Fan norm,

discussed below; also, if G−1(‖ · ‖G) is scale-invariant, then so is G−1(‖ · ‖Gc,w). If both conditions

hold, then G−1(‖ · ‖G) is a norm, and so is G−1(‖ · ‖Gc,w).
The Ky Fan k-norm of a vector y ∈ Rn is

∑
i∈[k] |y(i)|, where y(i) denotes the i’th largest entry

of y in magnitude. Thus the Ky Fan 1-norm of y is ‖y‖∞, and the Ky Fan n-norm of y is ‖y‖1.
The matrix version of the norm arises by application to the vector of singular values.

A disadvantage of this approach is that some smoothness is sacrificed: ‖z‖Gc,w is not a smooth
function, even if G is; while this does not affect the fact that the minimization problem in the
sketch space is polynomial time, it could affect the concrete polynomial time complexity, which we
leave a subject for future work.
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4 Net Argument.

We prove a general ε-net argument for M-estimators satisfying our growth condition (1).
We need a few lemmas to develop the net argument.

Lemma 24 (Bounded Derivative) There is a constant C > 0 for which for any a, b with |b| ≤ ε|a|,
G(a+ b) = (1± Cε)G(a).

Proof: First suppose that a and b have the same sign. Then by montonicity, G(a) ≤ G(a + b).
Moreover, by the growth condition,

G(a+ b)

G(a)
≤
∣∣∣∣a+ b

a

∣∣∣∣2 ≤ (1 + ε)2 ≤ 1 + 3ε,

and so G(a+ b) ≤ (1 + 3ε)G(a).
Now suppose a and b have the opposite sign. Then G(a+ b) ≤ G(a) by monotonicity, and again

by the growth condition,

G(a)

G(a+ b)
≤
∣∣∣∣ a

a+ b

∣∣∣∣2 ≤ (1 + 2ε)2 ≤ 1 + 5ε,

and so G(a+ b) ≥ G(a)/(1 + 5ε), and so G(a+ b) ≥ (1− 5ε)G(a).

Lemma 25 (Approximate Scale Invariance) For all a and C ≥ 1, G(Ca) ≤ C2G(a).

Proof: By the growth condition, G(Ca)/G(a) ≤ C2.

Lemma 26 (Perturbation of the weighted M-Estimator) There is a constant C ′ > 0 for which for
any e and any w, with ‖e‖G,w ≤ ε5‖y‖G,w,

‖y + e‖G,w = (1± C ′ε)‖y‖G,w.

Proof: By Lemma 25, G( 1
ε2
ei) ≤ 1

ε4
G(ei), and so ‖ 1

ε2
e‖
G,w
≤ 1

ε4
‖e‖G,w ≤ ε‖y‖G,w, where the

final inequality follows by the assumption of the lemma.
Now let S ⊆ [n] denote those coordinates i for which |ei| ≤ ε|yi|. By Lemma 24, G(yi + ei) =

(1± Cε)G(yi).
Now consider an i ∈ [n] \ S. In this case |yi| ≤ ε( 1

ε2
|ei|). Using that G is monotonically

non-decreasing and applying Lemma 24 again,

G(ei + yi) ≤ G(
1

ε2
ei + yi) = (1± Cε)G(ei/ε

2),

so that ∑
i∈[n]\S

wiG(yi + ei) ≤ (1 + Cε)‖e/ε2‖G,w

≤ (1 + Cε)ε‖y‖G,w.
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Again using that G is monotonically non-decreasing, we note that∑
i∈[n]\S

wiG(yi) ≤
∑

i∈[n]\S

wiG(ei/ε) ≤ ‖e/ε‖G,w

≤ ‖e/ε2‖G,w ≤ ε‖y‖G,w.

Hence,

‖y + e‖G,w
=
∑
i∈S

wiG(yi + ei) +
∑

i∈[n]\S

wiG(yi + ei)

= (1± Cε)
∑
i∈S

wiG(yi)± (1 + Cε)ε‖y‖G,w

= (1±O(ε))
∑
i∈[n]

wiG(yi)± (2 + Cε)ε‖y‖G,w

= (1±O(ε))‖y‖G,w.

This completes the proof.

Lemma 27 (Relation of weighted M-Estimator to 2-Norm) Suppose wi ≥ 1 for all i. Given an
n × d matrix A, an n × 1 column vector b, let c = minx ‖Ax− b‖2 (note the norm is the 2-norm
here). Let y∗ = Ax∗ − b, where x∗ = argminx‖Ax− b‖G,w. Then c ≤ ‖y∗‖2 ≤ κcn3/2‖w‖∞, where
κ > 0 is a sufficiently large constant.

Proof: If c = 0, then there exists an x for which Ax = b. In this case, since G(0) = 0, it follows
that ‖y∗‖2 = 0. Now suppose c > 0 and let y be a vector of the form Ax − b of minimal 2-norm.
Since ‖y‖2 = c, each coordinate of y is at most c. Hence, ‖y‖G,w ≤ ‖w‖∞ ·n ·G(c) by monotonicity
of G.

Now consider the 2-norm of y∗, and let d = ‖y∗‖2. By definition, d ≥ c. Moreover, there exists
a coordinate of y∗ of absolute value at least d/

√
n. Hence, by monotonicity of G and using that

wi ≥ 1 for all i, ‖y∗‖G ≥ G(d/
√
n). Since y∗ is the minimizer for G with weight vector w, necessarily

G(d/
√
n) ≤ ‖w‖∞ · n · G(c). If d/

√
n ≤ c, the lemma follows. Otherwise, by the lower bound on

the growth condition for G, G(d/
√
n) ≥ G(c) ·CGd/(c

√
n), and so CGd/(c

√
n) ≤ ‖w‖∞ · n. Hence,

d ≤ ‖w‖∞n3/2c/CG.

Lemma 28 (Net for weighted M-Estimators) Let c = minx ‖Ax− b‖2. For any constant CS > 0

there is a constant CN > 0 and a set N ⊆ {Ax− b | x ∈ Rd} with |N | ≤ (n/ε)CNd for which if both:

1. ‖S(Ax− b)‖G,w′ = (1± ε)‖Ax− b‖G,w holds for all Ax− b ∈ N and S is a matrix for which
‖S(Ax− b)‖G,w′ ≤ nCS‖Ax− b‖G,w for all x for an appropriate w′,

2. ‖w‖∞ ≤ nCs and wi ≥ 1 for all i,

then for all x for which ‖Ax− b‖2 ≤ κcn3/2‖w‖∞, for an arbitrary constant κ > 0, it holds that

‖S(Ax− b)‖G,w′ = (1± ε)‖Ax− b‖G,w.
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Moreover, if the first condition is relaxed to state only that (1− ε)‖Ax− b‖G,w ≤ ‖S(Ax− b)‖G,w′
for all Ax− b ∈ N and S is a matrix for which ‖S(Ax− b)‖G,w′ ≤ nCS‖Ax− b‖G,w for all x for an
appropriate weight vector w′, then the following conclusion holds: for all x for which ‖Ax− b‖2 ≤
κcn3/2‖w‖∞, for an arbitrary constant κ > 0, it holds that (1− ε)‖Ax− b‖G,w ≤ ‖S(Ax− b)‖G,w′.

Proof: Let L be the subspace of Rn of dimension at most d + 1 spanned by the columns of A
together with b. Let Nα be a finite subset of {z | z ∈ L and ‖z‖2 = α} for which for any point y

with ‖y‖2 = α, there exists a point e ∈ Nα for which ‖y − e‖2 ≤ ε5

n2CS+2α. It is well-known that

there exists an Nα for which |Nα| ≤
(

3n2CS+2

ε5

)d+1
[32]. We define

N = Nc ∪Nc(1+ε) ∪Nc(1+ε)2 ∪ · · · ∪Nκcn3/2‖w‖∞ .

Then

|N | = O(log1+ε κn
3/2‖w‖∞)

(
3n2CS+2

ε5

)d+1

≤
(n
ε

)CNd
,

where CN > 0 is a large enough constant.
Now consider any x ∈ Rd for which y = Ax− b satisfies ‖y‖2 ≤ κcn3/2‖w‖∞. By construction

of N , there exists an e ∈ N for which ‖e− y‖2 = O(ε5/n2CS+2)‖y‖2. Then,

‖S(e− y)‖G,w′ ≤ n
CS‖e− y‖G,w

≤ nCS · ‖w‖∞ · nG(‖e− y‖2),

using the fact that each coordinate of e − y is at most ‖e− y‖2 in magnitude and that G is
monotonically non-decreasing. By the lower bound on the growth condition on G,

G(‖e− y‖2) ≤
‖e− y‖2
CG‖y‖2

G(‖y‖2)

= O

(
ε5

n2Cs+2

)
G(‖y‖2).

Note that ‖y‖G,w ≥ G(‖y‖2/
√
n) by monotonicity and using that wi ≥ 1 for all i. Furthermore, by

the growth condition on G, G(‖y‖2) ≤ nG(‖y‖2/
√
n). Combining these inequalities, we have

‖S(e− y)‖G,w′ ≤ n
2Cs+1G(‖e− y‖2)

= O

(
ε5

n

)
G(‖y‖2)

= O(ε5)‖y‖G,w. (13)

Note that the argument thus far was true for any S and w′ for which ‖S(Ax− b)‖G,w′ ≤ nCs‖Ax−
b‖G,w for all x, and so in particular holds for S being the identity and w′i = 1 for all i ∈ [n]. So in
particular we have ‖e− y‖G,w = O(ε5)‖y‖G,w. Applying Lemma 26, it follows that

‖y‖G,w = ‖e+ (y − e)‖G,w = (1±O(ε))‖e‖G,w. (14)

Now we use the assumption of the theorem that for all e ∈ N with a particular choice of S and
w′ one has (1 − ε)‖e‖G,w ≤ ‖Se‖G,w′ ≤ (1 + ε)‖e‖G,w. Then ‖Sy‖G,w′ = ‖Se+ S(y − e)‖G,w′ .
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Now, ‖Se‖G,w′ = (1 ± ε)‖e‖G,w by the assumption of the theorem, whereas ‖S(y − e)‖G,w′ =

O(ε5)‖y‖G,w = O(ε5)‖e‖G,w by combining (13) and (14). So we can apply Lemma 26 to conclude
that ‖Sy‖G,w′ = (1± O(ε))‖Se‖G,w′ , and combining this with the assumption of the theorem and
(14),

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ = (1±O(ε))‖e‖G,w
= (1±O(ε))‖y‖G,w.

For the second part of the lemma, suppose we only had that for all e ∈ N , (1−ε)‖e‖G,w ≤ ‖Se‖G,w′ .
We still have ‖S(y − e)‖G,w′ = O(ε5)‖e‖G,W , and so we can still apply Lemma 26 to conclude that

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ .

Using (14), we have

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ ≥ (1−O(ε))‖e‖G,w
≥ (1−O(ε))‖y‖G,w,

which completes the proof.

4.1 Proof of Theorem 7.

Using Lemma 28, and previous results on contraction and dilation, we can now prove Theorem 7.

Proof: The first algorithm: compute SA and Sb, for S an M -sketch matrix with large enough
N = O(C−2

G d2m6+α), putting m = O(d log n), and ε = 1/2. This N is large enough for Theorem 19
to apply, obtaining a contraction bound with failure probability C−m1 .

To apply Lemma 28, we need to ensure the assumptions of the lemma are satisfied. For the
second condition, note that indeed ‖w‖∞ ≤ nCs for a constant Cs > 0 by definition of the sketch,
since hmax ≤ log n. For the first condition, because the second condition holds, it now suffices to
bound ‖Sy‖G,w for an arbitrary vector y. For this it suffices to show that for each level h and bucket
i, G(‖Lh,i‖Λ) ≤ nO(1)

∑
p∈Lh,i

G(p). By monotonicity of G, we have G(‖Lh,i‖Λ) ≤ G(‖Lh,i‖1). By
the growth condition on G, for a ≥ b we have

G(a+ b)

G(a)
≤ (a+ b)2

a2
≤ 2 +

2b2

a2
≤ 2 +

2G(b)

G(a)
,

and so G(a + b) ≤ 2G(a) + 2G(b). Applying this inequality recursively dlog |Lh,i|e times, we have
G(‖Lh,i‖1) ≤ n

∑
p∈Lh,i

|yp|, which is what we needed to show (where with some abuse of notation,

we use the definition yp = G(zp) given in §3.1).
Hence, we can apply Lemma 28, and by Theorem 19, the needed contraction bound holds for all

members of the net N of Lemma 28, with failure probability O(n)CNdC−m1 < 1, for m = O(d log n),
assuming conditions E and E ′c.

For xG minimizing ‖Ax− b‖G, apply Theorem 22 to xG and S, so that with constant probability,
‖S(AxG − b)‖G,w = O(logd n)‖AxG − b‖G = O(logd n)OPTG.

By making the totals of the failure probabilities for conditions E and E ′c, for the contraction
bound, and the dilation bound less than one, the overall failure probability is less than one. (Here
we note that all such failure probabilities can be made less than 1/5, even if described as fixed.)
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Let T be the sparse subspace embedding of [9], so that with probability 1 − o(1), ‖TAx‖2 =
O(1)‖Ax‖2 for all x and TA can be computed in nnz(A) time and T has poly(d) rows.

Find x0 minimizing ‖T (Ax− b)‖2, and let c ≡ ‖Ax0 − b‖2.
Now find x̃ minimizing ‖S(Ax− b)‖Gc,w, subject to ‖T (Ax− b)‖2 ≤ κcn3/2, using the ellipsoid

method, in poly(d log n) time. Now Lemma 28 applies, implying that x̃ satisfies the claim of the
theorem.

A similar argument holds for x̂, by minimizing ‖S(Ax− b)‖Gc,w.
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