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Abstract

The problem of maximizing a concave function f(x) in a simplex S
can be solved approximately by a simple greedy algorithm. For given k,
the algorithm can find a point x(k) on a k-dimensional face of S, such
that f(x(k)) ≥ f(x∗)−O(1/k). Here f(x∗) is the maximum value of f in
S. This algorithm and analysis were known before, and related to prob-
lems of statistics and machine learning, such as boosting, regression, and
density mixture estimation. In other work, coming from computational
geometry, the existence of ε-coresets was shown for the minimum enclos-
ing ball problem, by means of a simple greedy algorithm. Similar greedy
algorithms, that are special cases of the Frank-Wolfe algorithm, were de-
scribed for other enclosure problems. Here these results are tied together,
stronger convergence results are reviewed, and several coreset bounds are
generalized or strengthened.

1 Introduction

Consider the optimization problem

max
x∈IRn

f(x)

subject to x ∈ S,
(1)

where the given function f(x) is concave, and S is the simplex that is the
convex hull of the unit basis vectors of IRn. The vertices of S are the points
e(i), i = 1 . . . n, where e(i) has coordinate e(i)i = 1, and all other coordinates
zero.

Special cases of this problem include the problems of training support vector
machines and other classifiers, approximating functions as convex combinations
of other functions, finding D-optimal designs, estimating mixtures of probability
densities, and finding the smallest balls, ellipsoids, or axis-aligned ellipsoids
containing a given set of points.

∗IBM Almaden Research Center, San Jose, CA. klclarks@us.ibm.com Some of this work
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Algorithm 1.1. Pick as x(0) the vertex of S with largest f value, that is,
x(0) := arg max{f(e(i)) | e(i) a vertex of S};

For k = 0 . . .∞, find x(k+1) from x(k) as follows:

i′ := arg maxi∇f(x(k))i;

α′ := arg maxα∈[0,1] f(x(k) + α(e(i′)− x(k));

x(k+1) := x(k) + α′(e(i′) − x(k)); that is, x(k+1) is the point on the
line segment from x(k) to e(i′) that maximizes f ;

Figure 1. Maximizing the concave function f(x) in the simplex S

Algorithm 1.1, shown in figure 1, generates a sequence x(k) ∈ S, k = 0, . . .∞,
with increasing f(x(k)). In practice the loop would exit when x(k) is an adequate
solution by some application-specific criterion.

The procedure follows a limited form of gradient ascent: rather than optimize
in the direction of the gradient, only the largest component of the gradient is
used, so that x(k) has at most k + 1 nonzero entries. Moreover, the search
direction e(i′)− x(k) is used, from x(k) toward e(i′), not the direction e(i′); this
keeps the search within S.

The computational task of finding the maximizing α′ can be done by solving
a quadratic equation, if f is a quadratic (multivariate) function. In § 3 on
page 16, provably good performance is shown for a variant in which the α′ value
used at step k is a pre-defined αk. Otherwise, the determination of α′ is left to
be determined for a given problem class.

Instances of this procedure, and variations of it, have been proposed inde-
pendently many times, but the oldest version seems to be due to Frank and
Wolfe [FW56]; they also proved a fundamental approximation result for gen-
eral concave functions, described below. Similar algorithms, and results, have
appeared in the machine learning literature, as sparse greedy approximation, as
discussed in § 1.3 on page 7. In the computational geometry literature, similar
algorithms have been proposed for the purpose of finding (or simply proving the
existence of) coresets, which are discussed in §1.2, §4, and §5.

One of the contributions of this paper is just to put together these lines of
work1. However, there are some specific new results:

• A definition of coresets that applies in the general setting of Algorithm 1.1,
with corresponding general existence results (§4), proven with algorithms
that are variations of Algorithm 1.1. One construction is worst-case tight
(§5), exactly;

• Coreset results for support vector machines (SVM) that are significantly
tighter, in constant factor, than known before (§7.2);

• Sample complexity bounds for learning, based on the coreset results (§6);
in the case of SVM, these are similar to those proven via perceptrons and
Novikoff’s mistake bound (§7.2);

1The Frank-Wolfe algorithm was applied as such in some of the cited applications (e.g.,
[AST06, KY05]).
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• Improvements in generality and provable speed of a practical SVM training
algorithm based on coresets [TKZ06], and a sharper analysis of a simple
approximation algorithm for minimum enclosing balls[BC];

• A quantitative approximation bound for Anyboost.L1 [MBBF00], since it
is an instance of Algorithm 1.1;

• An algorithm for sparse greedy approximation that is a bit simpler than
the one known in the machine learning literature [Zha03];

• Coreset results for boosting, (§7.3) previously unknown.

A look at Figure 3 on page 10 gives some idea of the range of applications of
Algorithm 1.1. (However, results here do not generally apply to the ellipsoid
problems.)

After discussing some general properties of Algorithm 1.1 and its use for
sparse approximation, this introduction describes its use for primal/dual ap-
proximation, and how some further refinements result in an algorithmic exis-
tence proof for coresets. Finally, the relation to the sparse greedy approximation
technique of learning theory is given, and an outline of the remainder of the pa-
per.

1.1 Sparse approximation

The original Frank-Wolfe algorithm applies in the general context of maximiz-
ing a concave function f() within a feasible polytope F . At each iteration,
the algorithm solves the linear programming problem of finding the optimum
y′ maximizing within F the local linear approximation f(y) ≈ f(x) + (y −
x)T∇f(x), where x is the current iterate x(k). The algorithm then solves the
one-dimensional optimization problem of finding the largest value of f on the
line segment [x, y′].

Here the feasible set F is the simplex S, and the solution of the maximization
problem is the y′ ∈ S that maximizes yT∇f(x); that optimum y′ is simply e(i′),
as used in Algorithm 1.1. That is, maxy∈S yT∇f(x) = maxi∇f(x)i. The
maximum value of the linear approximation is

(2) f(x) + ((e(i′)− x)T∇f(x) = max
i
∇f(x)i + f(x)− xT∇f(x).

This function of x is the Wolfe dual, as discussed in § 2.1 on page 9.
As reviewed in Theorem 2.2 on page 14, for a certain nonlinearity measure

Cf ≥ 0 of f , related to the second derivative of f , and for x∗ ∈ S maximizing
f in S, this procedure satisfies

f(x(k)) ≥ f(x∗)− 4Cf/(k + 3).

Such a relation was shown by Frank and Wolfe[FW56], and has also been shown
for the related Algorithm 1.2 on page 8, as discussed in § 1.3.

This convergence rate is slow, compared to modern methods, but the sim-
plicity of Algorithm 1.1 means that for many problems, the work per itera-
tion is small; in particular, the solution of linear systems, as is often done in
faster-converging methods, is not needed by Algorithm 1.1. For some large-scale
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applications, such a trade-off is favorable to algorithms like Algorithm 1.1, as
discussed by Platt [Pla99] and by Tsang et al. [TKC05, TKL05] for the par-
ticular case of the training of support vector machines. Another example is
semidefinite programming, where the number of variables can be quite large.
Similar considerations also motivate some recent interest in more general gra-
dient descent algorithms [Nem05, Haz06, TLJJ06].

Another motivation is that sometimes rough approximations are acceptable
for an application. For example, when computing a statistical estimator involves
an optimization problem, the noisiness of the data implies that the parameters
given by the optimal solution, and the corresponding true (population) values of
those parameters, are only related by error upper bounds. In such a situation,
an approximation within a small factor of the error upper bounds is likely to
be quite acceptable. Such a point was observed most recently perhaps by Altun
and Smola [AS06]; they propose the use of Algorithm 1.2 on page 8 for some
general problems of inference; it’s worth noticing that Algorithm 1.1 is often
applicable to these problems also.

Perhaps the main point of interest for Algorithm 1.1 is the sparsity of the
solutions that it finds. The iterate x(k) has few (at most k + 1) nonzero entries,
and so is sparse in that sense. Thus the convergence result mentioned above
shows that there are sparse solutions that are provably good approximations.
In the extreme case Cf = 0, f is simply a linear function, and the optimum
x∗ is one of the vertices: a very sparse solution, with one nonzero entry. More
generally, the smaller Cf is, the flatter f is, and the more effective a procedure
based on local linear approximation by the gradient will be.

When f(x) is a quadratic function f(x) = a + xT b + xT Mx, for M negative
semidefinite, the value of Cf is no more than the square of the diameter of the
minimum enclosing ball of a set of points derived from M .

The Minimum Enclosing Ball (MEB, 1-center, smallest enclosing sphere)
problem is as follows: given a set of points P = {p1 . . . pn} in d dimensions,
find the smallest ball containing all points of P . The dual of the MEB problem
is of the form (1), with f(x) = xT b − xT AT Ax, where bi = p2

i = pT
i pi, and

A is the matrix whose columns are the pi. Letting c := Ax, the gradient of
f is b − 2AT Ax = b − 2AT c, and the i’th coordinate of ∇f(x) is p2

i − 2pT
i c =

(pi − c)2− c2. Thus the coordinate i′ corresponds to the point pi′ farthest from
c. Picking α′ = αk = 2/(k + 3) at the k’th step, as discussed in § 3 on page 16,
thus is very close to an algorithm proposed by Bădoiu and Clarkson ([BC03], the
“simple” algorithm), and so by Theorem 2.2 on page 14, their algorithm needs
O(nd/ε) time to return a ball with radius within 1+ε of smallest. This sharpens
their analysis, and matches the running time of Panigrahy’s algorithm [Pan04],
with an arguably simpler algorithm. Some other approximation algorithms for
MEB [BC03, KMY03] have running time O(nd/ε + 1/εO(1)), and are somewhat
more complicated.

Although the approximation error bound for Algorithm 1.1 is additive, in
general, for the MEB problem the term Cf is proportional to the square R2

of the MEB radius, and since the algorithm is used in a formulation of the
MEB problem where the optimum of the objective function is also R2, the error
bound for MEB is relative. For SVM, where the objective function is the squared
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thickness G2 of a certain separating slab, the error bound can be expressed in
terms of R2/G2, a ratio which is familiar as the VC-dimension of a range space
associated with SVM.

Similarly to MEB, the MEE (minimum enclosing ellipsoid) problem, to find
the smallest ellipsoid enclosing a set of points, is dual to a concave maximization
problem over S [Kha96, KY05, AST06]. That maximization problem is called
the D-optimal design problem, and an algorithm similar to Algorithm 1.1 was
proposed for it by Wynn and by Fedorov [Wyn70, Fed72]. Not all results given
here apply in an interesting way to this problem, however, because the Cf bound
is too large when considered over all of S.

Primal/Dual Approximation. The property f(x(k)) ≥ f(x∗)−4Cf/(k+3)
mentioned above can be expressed as h(x(k)) ≤ 1/(k + 3), where h(x) is the
scaled measure

(3) h(x) := (f(x∗)− f(x))/4Cf .

A key property satisfied by the algorithm, that implies this approximation
bound, is that

(4) h(x(k+1)) ≤ h(x(k))− h(x(k))2,

when h(x(k)) ≤ 1/2, as given in (18) on page 14. A similar relation was shown
by Frank and Wolfe[FW56] for Algorithm 1.1, and so this implies that such a
result holds for Algorithm 1.2 on page 8; the latter was shown also by Zhang
[Zha03], as discussed in § 1.3.

The analysis reviewed here also implies this, but gives a stronger condition:
let w(x) denote the value at x of the dual optimization of (1); this problem is
described at (8). Let

(5) g(x) := (w(x)− f(x))/4Cf ,

a scaled version of the gap between w(x) and f(x). Note that w(x) ≥ f(x)
for all feasible x. Then as stated as Theorem 2.1 on page 13, the iterates of
algorithms 1.1 and 1.2 satisfy

(6) h(x(k+1)) ≤ h(x(k))− g(x(k))2,

when g(x(k)) ≤ 1/2.
This bound is plainly always as good as the prior one (4), since the dual gap

measure g(x(k)) ≥ h(x(k)) always, and when g(x(k))−h(x(k)) is large, the bound
will be much better. Of course, it could also be that g(x(k))− h(x(k)) is small,
so that the guaranteed improvement in f is no better than that previously
known. However, as Theorem 2.3 on page 14 states, the implication of this
stronger bound is that in 2/ε iterations, an iterate x(k) will be seen that has
both h(x(k)) ≤ ε, as in prior analyses, and also g(x(k)) ≤ ε. That is, x(k) will
be “good” both primally and dually.

A special case of this observation was made by Khachian [Kha96], and proven
in this generality by Ahipasaoglu et al.[AST06]; (In that work, the main focus
was on the minimum enclosing ellipsoid problem.) This primal/dual approxi-
mation property is not far from the specification of a coreset, discussed next.
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1.2 Coresets

Coresets were first explicitly described for the MEB problem described above.
For ε > 0, an ε-coreset P ′ ⊂ P has the property that if the smallest ball
containing P ′ is expanded by a factor of 1 + ε, then the resulting ball contains
P . Also, since the smallest ball containing P also contains P ′ in particular,
the smallest ball containing P must be at least as large as the smallest ball
containing P ′. That is, P ′ gives both a good approximate solution, and proves
that no solution is much better.

A fundamental property of the MEB problem is that, as shown by Bădoiu
et al.[BHPI02], there are ε-coresets whose size (number of points) depends only
on ε, and not on the dimension d, or the number n of points. Algorithms
are known for finding ε-coresets of size O(1/ε) [KMY03, BC03], and size d1/εe
is worst-case optimal [BC]. Coresets for MEB have been applied to the k-
center problem [BHPI02], to computational biology [BJGL+03], and to machine
learning [NN06], including support vector regression [TKL05].

The results of Ben-David et al. also imply the existence of coresets, for MEB
and a few other problems [BDES02]. Their work relies on the existence result
attributed to Maurey, as mentioned in § 1.3 on the next page; their also § 2.4 on
page 15 gives an argument like Maurey’s. Their application was the densest-ball
problem, discussed below.

As mentioned, the Wolfe dual of the MEB problem is an instance of the op-
timization problem (1). Moreover, a known algorithm for finding MEB coresets
[BC03] is similar to Algorithm 1.1. This is not a coincidence: § 4 on page 17
shows that ε-coresets exist for the dual problem of (1), with a size that depends
only on ε and Cf . Here the idea of a coreset is generalized from the MEB
problem to the more general setting.

As defined technically (Definition 4.1 on page 18), a coreset here is a subset
N ⊂ {1, . . . , n}, or equivalently the face SN of S specified by N , where SN is
the convex hull of {e(i) | i ∈ N}. In particular, a coreset is such a subset (or
face) with the property that arg maxx∈SN

f(x) is a good approximate solution
to the full problem (1), both primally and dually. In other words, N is a
combinatorial specification of an approximate solution, which is also a certificate
of the solution’s near-optimality.

The technical definition includes a factor of 2 and of a variation C∗
f of Cf ,

so that as specialized to the MEB problem, the definition matches the previous
one.

The coreset existence proof includes an algorithm, Algorithm 4.2 on page 18,
that builds a coreset; the algorithm is very similar to Algorithm 1.1, but does
a little more work: having chosen a coordinate to make non-zero, it finds the
point x that maximizes f(x) over all points with the same set of non-zero entries.
That is, it solves some small optimization subproblems.

The coreset size, for a given quality of additive approximation ε, is at most
4Cf/ε, as shown in Theorem 4.3 on page 18. A simpler general algorithm,
given in Theorem 4.4 on page 19, gives a poorer quality coreset, while a slower
algorithm, Algorithm 5.1 on page 22, gives a coreset of roughly half the size
obtainable via the faster algorithm, with the same approximation quality. Al-
gorithm 5.1 uses an “away” step within each iteration, in which a nonzero coor-
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dinate is set to zero. Such a step was considered by Todd and Yildirim [TY05],
as a heuristic improvement for optimization, and within an algorithm for opti-
mal MEB coresets, by Bădoiu and Clarkson [BC]. The results here generalize
the latter, and are asymptotically optimal for MEB coresets, as ε → 0.

The exact size ` of a coreset of given quality is significant, because some
algorithms exploiting coresets involve enumerating, for an input set of n points,
all
(
n
`

)
subsets of size `. One such application is the densest-ball problem:

given a set of points, find the smallest ball containing half the points. The
existence of a small ε-coreset for the points inside that smallest ball implies
that enumeration of all subsets of that size will allow the densest-ball problem
to be solved approximately. A similar application of coresets in the convex
approximation setting is described in § 7.1 on page 24; for the densest-ball
problem, such algorithms were proposed by Ben-David et al., as mentioned
[BDES02].

Several previous papers have shown the effectiveness of coreset techniques
for support vector machine (SVM) training and regression [TKC05, CTK04,
TKZ06], of which one [TKZ06] generalizes from the MEB problem to a more
general quadratic objective function. The work here is inspired by, and would
seem to include, that prior generalization. Har-Peled et al. [HPRZ07] give an
algorithm for hard-margin SVM training that is not far from Algorithm 4.2
on page 18. However, their algorithm solves small subproblems optimally at
each step, as in Algorithm 4.2, but unlike Algorithm 1.1, and is perhaps slower
than Algorithm 1.1 as specialized to SVM training. (However, a variant of their
algorithm avoids such subproblem computations [HP07].)

SVM training is discussed in § 7.2 on page 26. As applied to proving the
existence of coresets for SVM, the coreset size proven here via Algorithm 5.1 on
page 22 is smaller by a constant factor than that in [HPRZ07].

Coresets for other classes of problems have seen wide application in compu-
tational geometry: see [AHPV05] for a survey.

1.3 Sparse Greedy Approximation

The problem (1) is often given in the equivalent formulation of minimizing a
convex function, and in that form is considered in statistics, approximation the-
ory, and machine learning. (Here we minimize a convex function by maximizing
its concave negation.) For example, for an appropriate d × n matrix A and
point p, maximizing f(x) := −‖Ax − p‖22 for x ∈ S would correspond to the
problem of finding the convex combination of the columns of A that is closest
to p in Euclidean norm. Similarly, if a collection of functions pi(t) and a target
function p(t) is given, then f(x) := −‖

∑
i xipi(t) − p(t)‖22, corresponds to the

problem of finding the closest (in L2) convex combination of the pi() functions
to match p [LB00].

Algorithm 1.1 on page 2 can be viewed generically as finding, at each step,
a good coordinate in which to change x, and then adjusting that coordinate
to maximize f(x). One such algorithm in particular, described in figure 2 on
the following page, has been analyzed before. Plainly this algorithm will find
an iterate x(k+1) for which f(x(k+1)) is at least as large as for Algorithm 1.1.
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Algorithm 1.2. Proceed as in Algorithm 1.1 on page 2, but rather than pick i′

and α′ as in that algorithm, find the i′ and α′ that maximize f(x(k) + α(e(i)−
x(k))) over all i and α, and set x(k+1) to the corresponding point.

Figure 2. Maximizing the concave function f(x) in the simplex S

Sparsity results for Algorithm 1.2 were shown in generality by Zhang[Zha03],
whose proof has the same general idea as analyses by Li and Barron [LB00] and
Jones [Jon92]. Maurey proved the existence of a sparse x′ with f(x′) ≥ f(x∗)−
O(1/(k + 3)), for a class of functions f(x) arising in convex approximation,
using a probabilistic argument ([Pis81], see also [Bar93]), and Jones showed
that a greedy algorithm such as Algorithm 1.2 yields a similar output [Jon92].

Algorithm 1.2, and variations, has been applied to boosting, regression, con-
vex approximation, and estimation of mixture models [Zha03] (applicability to
SVM training is also mentioned by Zhang, but no specific results are given).
Algorithm 1.1 can thus be similarly applied, for those f(x) whose gradients can
be computed; this includes all the specific applications considered by Zhang.
When a single gradient computation is faster than n function evaluations, as
may be true, Algorithm 1.1 and its variants will be faster than Algorithm 1.2
and comparable variants. (However, it’s also true that the n evaluations of a
function at closely related arguments may be sped up.) Also, since the problems
discussed by Zhang involve optimization over convex hulls, the coreset results
of § 4 on page 17 apply. The existence of coresets for these problems may have
some useful applications; the case of convex approximation is discussed in § 7.1
on page 24.

Algorithm 1.1 is also closely related to Anyboost.L1[MBBF00], which can
roughly be viewed as the specialization of Algorithm 1.1 to boosting. Although
convergence results were shown for Anyboost, it doesn’t seem that quantitative
results have been, and so the results here are a new contribution in that respect.

1.4 Outline

The next section gives an analysis of Algorithm 1.1, after describing the dual op-
timization problem and defining the nonlinearity measure Cf . The probabilistic
argument for sparse approximate solutions is reviewed in § 2.4 on page 15, with
a particular example related to k-means clustering. Section 3 on page 16 gives
some variations on Algorithm 1.1, that do less work per iteration by using a
predefined series of α′ values. Section 4 on page 17 considers the more general
case of optimization within the convex hull of a set of points, and then gives a
construction for coresets of functions f(x) of the general form f̂(Ax); as noted,
this includes all quadratic concave f(x). Tighter bounds for coresets using an
algorithm with “away” steps is discussed in § 5 on page 21. In § 6 on page 23,
some tail estimates for random data are shown, and finally some specific appli-
cations are considered in § 7 on page 24: convex approximation, support vector
machines (SVM), Adaboost, and approximation in Lv. The results for SVM
include an error probability estimate based on the tail estimates of § 6.

Figure 3 lists some of the problems that can be described as instances of
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(1). The conditions that x is an n-vector and A is d× n imply the dimensions
of the remaining values. As elsewhere in this paper, the notation c2 for a vector
c denotes cT c, and e is the n-vector with all coordinates equal to one. Also the
i’th column of A is pi, or instead yipi, when a given n-vector y is associated with
the problem. As usual in this paper, c = Ax, and M := −AT A, a negative-
semidefinite matrix. The notation (A ◦ A)j denotes the n-vector whose i’th
coordinate is p2

ij , and H � 0 denotes the condition that matrix H is positive
semidefinite.

The three problems listed after the general quadratic are themselves quadratic,
so that the duals of MEB, convex approximation, and L2-SVM can be read off
from the dual for the general quadratic. At the risk of some confusion, the “M”
of the general quadratic is instantiated for L2-SVM as the matrix with block
structure

−[AT y I/C][AT y I/C]T ,

and so the “c” of the general quadratic is for L2-SVM the (d + 1 + n)-vector
[cT q wT ]T . Along similar lines, the “A” of the general quadratic is not quite
the same as the “A” for the general expression for maximizing functions within
a convex hull of points: see the beginning of § 4.2 on page 20.

2 Primal and Primal/Dual Approximation

Before analyzing Algorithm 1.1, some reminders. We let e be the column n-
vector with all coordinates equal to one, so that the simplex S can be written
as

(7) S :=
{
x ∈ IRn

∣∣ xT e = 1, x ≥ 0
}

.

2.1 The Wolfe Dual

When f(x) is continuously differentiable, the Wolfe dual problem to the maxi-
mization problem (1) is

min
z∈IR,x∈IRn

z + f(x)− xT∇f(x)

subject to z ≥ max
i
∇f(x)i.

(8)

Since plainly the smallest feasible z is maxi∇f(x)i, let

z(x) := max
i
∇f(x)i,

and the dual problem becomes

min
x∈IRn

w(x), where w(x) := z(x) + f(x)− xT∇f(x).

As mentioned in § 1, this function w(x) is the maximum value within S of the
local linear approximation to f(x), corresponding to the tangent hyperplane to
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Problem f(x) Dual problem
References Notes

General Function f(x)
minz,x z + f(x)− xT∇f(x)

s.t. ze ≥ ∇f(x)

§2.1 for dual

Functions Within
Convex Hull

f(x) := f̂(Ax)
minz,c z + f̂(c)− cT∇f̂(c)

s.t. ze ≥ AT∇f̂(c)
§4

General Quadratic a + xT b + xT Mx
minz,c a + z + c2

s.t. ze ≥ b− 2AT c

§4.2
c = Ax
Cf ≤ diam(AS)2

ME Ball, SVDD xT b(A) + xT Mx
minz,c z + c2

s.t. ze ≥ b(A)− 2AT c

§1, §4.2
b(A)i := p2

i

C∗
f ≤ radius(AS)2

Convex Approx.,
SVM

−(p−Ax)2
minz,c −p2 + z + c2

s.t. ze ≥ 2AT p− 2AT c
§7.1,[TKC05],[HPRZ07]

L2-SVM
(two-class)

−xT [M + yyT + I/C2]x
= −([AT y I/C]T x)2

minz,c,q,w z + c2 + q2 + w2

s.t. ze ≥ −2(AT c
+qy + w/C)

[TKZ06]
Cf ≤ (diam(AS) + 1 + 1/C)2;
c = Ax, q = yT x, w = x/C;
yi = ±1

L2-SVR (see [TKZ06])

Adaboost − log
∑

j exp(−C(Ax)jrj) (not given here)

§7.3 [Zha03]
Aji = predictor i, datapoint j;
rj = ±1;
Cf ≤ 4C2;

Lv Regression,
1 < v < ∞ −‖p−Ax‖v′

v , v′ := min{v, 2} (not given here)

§7.4,[Zha03]
Cf ≤ 2(v − 1) diam(AS)2,
v ≥ 2;

ME Ellipsoid,
D-Optimal Design

log det AXAT
minH�0 − log det H

s.t. pT
i Hpi ≤ d,

i = 1 . . . n

[AST06][Kha96] diagonal X, Xii = xi;

ME Axis-Aligned
Ellipsoid

(1/2)[d log d

+
∑

1≤j≤d

log(xT (A ◦A)j − (Ax)2j )]

minγ,µ −
∑

j log γj

s.t.
∑

j(γjpij − µj)
2 ≤ 1

i = 1 . . . n
[KY05]

Figure 3. Some problems within the framework.10



the graph of f at x. By the concavity of f , every such tangent hyperplane is
above (or touching) the graph of f , and so for all x ∈ S, w(x) ≥ f(x∗).

Thus the weak duality condition w(x) ≥ w(x∗) ≥ f(x∗) ≥ f(x) is immediate.
This condition is all that is needed for many results here, but for the some
purposes, in particular the “away” algorithm of § 5 on page 21, stronger duality
conditions must be proven, specifically, that if x∗ is primal optimum, then it
is also dual optimum. Also, complementary slackness holds, that is, the ith
coordinate of x∗ and the quantity z∗ −∇f(x∗))i cannot both be nonzero.

To obtain these conditions, and prove the weak duality conditions more
formally, the Lagrangian relaxation can be used. A familiar form of this relax-
ation, for a convex function −f(x) and for the equivalent optimization problem
−minx∈S −f(x), is:

− max
z∈IR

λ∈IRn,λ≥0

min
x∈IRn

−f(x)− xT λ + z(xT e− 1),

for which the minimum with respect to x is achieved when all derivatives with
respect to x are zero, that is, −∇f(x) − λ + ze = 0, or λ = ze − ∇f(x). The
condition λ ≥ 0 implies ze ≥ ∇f(x), and plugging this expression for λ into the
Lagrangian, the problem becomes

−max
z∈IR

min
x∈IRn

−f(x)− xT (ze−∇f(x)) + z(xT e− 1)

= − max
z∈IR,x∈IRn

−f(x) + xT∇f(x)− z

= min
z∈IR,x∈IRn

z + f(x)− xT∇f(x),

subject to ze ≥ ∇f(x), as claimed.
The Slater condition, which is that a feasible point exists that satisfies all

inequality constraints strictly, is easily seen to be satisfied, and so strong duality
holds, by Slater’s Theorem [BV04]. Thus an optimum point x∗, for which f(x∗)
is maximum, is also a dual optimal point. For any feasible point x ∈ S we have

w(x) ≥ w(x∗) = f(x∗) ≥ f(x),

and also complementary slackness.

2.2 The measure Cf

The quantity Cf is defined as

(9) Cf := sup
1
α2

(f(x) + (y − x)T∇f(x)− f(y)),

where the supremum is over all x and z in S, and over all α so that y =
x + α(z − x) is also in S. The set of such α includes [0, 1], but α can also be
negative. The concavity of f implies that f(y) is always no more than the local
linear approximation f(x)+(y−x)T∇f(x). The quantity Cf bounds how much
less f(y) will be, measured as a quadratic function of the “distance” of y from
x, where the “distance” is the α so that y = x + α(z − x) for some z ∈ S.
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The expression in the supremum bears a clear relation to the Bregman dis-
tance from y to x induced by −f .

There are some expressions for Cf that hold for special cases.
When f is twice differentiable, the Taylor expansion at α = 0 of f(x+α(z−

x)) as a function of α is:

f(x + α(z − x)) = f(x) + α(z − x)T∇f(x) +
1
2
α2(z − x)T∇2f(x̃)(z − x).

Here the last term is the Lagrange remainder, where x̃ is a point on the line
segment [x, x + α(z − x)]. (Everywhere but in § 5 on page 21, the values of α
considered are between 0 and 1, so that x̃ in on the line segment [x, z].)

Since f is concave, ∇2f(x̃) is negative semidefinite, and so the last term is
always negative. Rearranging,

Cf ≤ sup
x,z∈S

−1
2
(z − x)T∇2f(x̃)(z − x)

≤ sup
x,z∈S,x̃

−1
2
(z − x)T∇2f(x̃)(z − x),(10)

where x̃ is constrained to lie in S, and on the line through x and z.
When f(x) has the form f(x) = f̂(Ax), where A is a matrix of conforming

shape and f̂ is a function taking a conforming argument, the bound (10) for Cf

can be expressed as follows. With a := Ax ∈ AS, and similarly b := Az, ã := Ax̃,
and observing that ∇2f(x) = AT∇2f̂(Ax)A,

Cf ≤ sup
x,z∈S

−1
2
(z − x)T∇2f(x̃)(z − x)

= sup
x,z∈S

−1
2
(z − x)T (AT∇2f̂(Ax̃)A)(z − x)

= sup
a,b∈AS

−1
2
(b− a)T∇2f̂(ã)(b− a)(11)

Finally, when f(x) = xT b + xT Mx, for some vector b and negative semi-
definite matrix M , then ∇2f(x) = 2M . Moreover, there is a factorization
−M = AT A for a matrix A, and so

Cf ≤ sup
x,z∈S

−1
2
(z − x)T∇2f(x)(z − x)

≤ sup
x,z∈S

(z − x)T AT A(z − x)

= sup
a,b∈AS

‖b− a‖22.(12)

That is, Cf is no more than the square of the diameter of the polytope AS, and
the latter is bounded by the square of the diameter of the minimum enclosing
ball of AS, and hence by four times the square of the radius of that ball.
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A related quantity that has appeared in the functional analysis and machine
learning literatures is the modulus of convexity, introduced by Clarkson (in
particular, J. A. Clarkson). This quantity could be defined similarly to Cf ,
but using the infinum instead of the supremum: a lower bound on nonlinearity,
instead of an upper bound.

Asymptotic C∗
f . It is of interest to bound a more restricted set of values,

namely, where x is near the optimal point x∗. This models the use of Cf

in analyzing the algorithms discussed here, as they converge to the optimum.
Given region S′ ⊂ S, consider Cf (S′), defined as in (9) on page 11, but where
x is restricted to S′. For given γ ≥ 0, consider Sγ to be the subset of S that
contains all x such that f(x) ≥ f(x∗) − γ. For large enough k = Ω(Cf/γ), as
γ → 0, all x(k) are in Sγ , and so for Cf (Sγ) < Cf = Cf (S), the additive bound of
Theorem 2.2 on the following page can be tightened for large k. We will assume
at times that Cf (Sγ) = C∗

f (1 + o(1)) as γ → 0, where C∗
f := Cf ({x∗}). This

is true for quadratic functions, for which C∗
f is the maximum squared distance

of x∗ to a point in AS. For MEB in particular, C∗
f is the square of the radius

of the MEB. That is, the asymptotic C∗
f for MEB is one quarter the general

bound. This distinction is not significant in general, but by showing results with
respect to C∗

f , it will be possible to show that some constructions for MEB are
asymptotically optimal, including the constant factor in the leading term.

2.3 Primal/Dual Bounds

The following theorem is essentially due to Ahipasaoglu et al.[AST06], and
generalizes a lemma of Khachian [Kha96].

Theorem 2.1. For simplex S and continuously differentiable concave function
f , one iteration of Algorithm 1.1 on page 2 satisfies

h(x(k+1)) ≤ h(x(k))− g(x(k))2.

As noted, this bound applies also for Algorithm 1.2 on page 8.

Proof. For simpler notation, let x := x(k), y := x(k+1).
We have, by definition,

(13) ∇f(x)i′ = z(x) = w(x)− f(x) + xT∇f(x).

Also by definition (9),

(14) f(x + α(e(i)− x)) ≥ f(x) + α(e(i)− x)T∇f(x)− α2Cf ,

for all i, including i′. But using (13),

(e(i′)− x)T∇f(x) = ∇f(x)i′ − xT∇f(x)
= w(x)− f(x),

and with (14),

(15) f(y) ≥ f(x) + α(w(x)− f(x))− α2Cf .

13



which implies, using (3), (5), and (17),

h(y) = (f(x∗)− f(y)/4Cf

≤ h(x)− α(w(x)− f(x))/4Cf + α2/4

= h(x)− αg(x) + α2/4(16)

≤ h(x)− g(x)2.(17)

Here the last step assumes g(x) ≤ 1/2, so that the minimizing α = 2g(x) can
be chosen. However, this assumption will always hold, by the choice of x(0):
suppose g(x) > 1/4. Then by (16), h(y) < h(x) even when α = 1, that is, when
y is a vertex of S. But since f(x(0)) ≥ f(e(i)) for all i, and f is concave, and
f(x(k)) increases as k increases, h(x(k)) is less than h(e(i)) for any i. Hence
g(x) ≤ 1/4, and the minimizing α = 2g(x). �

Theorem 2.2. For simplex S and concave function f , Algorithm 1.1 (and
Algorithm 1.2 on page 8) finds a point x(k) on a k-dimensional face of S such
that

h(x(k)) = (f(x∗)− f(x(k)))/4Cf ≤ 1/(k + 3)

for k > 0.

Proof. The vertices of the k-face will be the vertices of S (the e(i′)) associated
with each x(k). It remains to bound the values h(x(k)). Since g(x) ≥ h(x), we
always have

(18) h(x(k+1)) ≤ h(x(k))− h(x(k))2.

From the proof of the last theorem, g(x(0)) ≤ 1/2, and so h(x(1)) ≤ 1/2 −
(1/2)2 = 1/4. More generally, noting that 1 − γ ≤ 1/(1 + γ) for γ > −1, and
letting hk := h(x(k)),

h(x(k+1)) ≤ hk(1− hk) ≤ hk

1 + hk
=

1
1 + 1/hk

and so by induction, h(x(k)) ≤ 1/(k+3) for k > 0, and the theorem follows. �

Theorem 2.3. For simplex S and continuously differentiable concave function
f , and given ε > 0, Algorithm 1.1 (and Algorithm 1.2) will have an iterate x(k̂)

with k̂ ≤ 2K, where K := d1/εe so that g(x(k̂)) ≤ ε. That is, w(x(k̂))−f(x(k̂)) ≤
4εCf .

Of course, to determine which of the x(k) has g(x(k)) ≤ ε seems to need the
knowledge of Cf ; for an existence proof this knowledge can be assumed. Since
w(x)− f(x) = z(x)− xT∇f(x), however, the point x(k), for k = K . . . 2K with
minimum z(x)− xT∇f(x) will have both h(x(k)) ≤ ε and g(x(k)) ≤ ε.

Proof. The previous theorem shows that k ≤ K iterations suffice to obtain
x(k) with h(x(k)) ≤ ε. During subsequent iterations, either iterate x(j), has
g(x(j)) ≤ ε or h(x(j+1)) ≤ h(x(j)) − ε2 by Theorem 2.1 on the previous page.
Hence for some k̂ ≤ k +K ≤ 2K, g(x(k̂)) ≤ ε, since otherwise h(x(2K)) < 0. �
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2.4 Existence via a Probabilistic Argument

A probabilistic proof can be given for the existence of a sparse x, that has K
nonzero entries, such that f(x) is not far from f(x∗). (Not a coreset, however.)
For simplicity, consider here only the quadratic case f(x) = a + xT b + xT Mx,
with M negative semidefinite as usual. Let Y ∈ IRd be a random variable defined
as follows: a coordinate i is chosen with probability x∗i (here writing x∗ for the
optimum), and the i’th coordinate Yi := 1/K, and all other coordinates are zero.
Consider a collection Y k, k = 1 . . .K, of such random variables, independently
distributed. Then for Z :=

∑
k Y k ∈ S, EZ = x∗, and at most K coordinates

of Z are nonzero. Also, for i 6= j,

E[ZiZj ] = E[
∑

k

Y k
i

∑
k′

Y k′

j ]

=
∑
k 6=k′

E[Y k
i Y k′

j ] +
∑

k

E[Y k
i Y k

j ]

=
∑
k 6=k′

E[Y k
i ]E[Y k′

j ] + 0

= (K2 −K)x∗i x
∗
j/K2 = x∗i x

∗
j (1− 1/K),

and

E[Z2
i ] = E[

∑
k

Y k
i

∑
k′

Y k′

i ]

=
∑

k

x∗i /K2 +
∑
k 6=k′

(x∗i )
2/K2

= x∗i /K + (x∗i )
2(1− 1/K),

and so

E[ZT MZ] =
∑
i,j

mijE[ZiZj ] = (x∗)T Mx∗(1− 1/K) +
∑

i

miix
∗
i /K.

Using these observations, and with as usual M = −AT A where A has columns
pi,

a + (x∗)T b + (x∗)T Mx∗ − E[a + ZT b + ZT MZ]

= (x∗)T Mx∗ − E[ZT MZ]

= (x∗)T Mx∗ − [(x∗)T Mx∗(1− 1/K) +
∑

i

miix
∗
i /K]

= (x∗)T Mx∗/K +
∑

i

p2
i x

∗
i /K

≤
∑

i

p2
i x

∗
i /K(19)
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Since f(x∗) − Ef(Z) is bounded in this way, there must exist some z with K
nonzero entries that meets this bound. The above satisfies

(20)
∑

i

p2
i x

∗
i /K ≤ [max

i
p2

i ]
∑

i

x∗i /K = max
i

p2
i /K.

Any quadratic problem can be translated, without loss of generality for this
construction, so that the origin is the center of the MEB of the pi, implying
maxi p2

i = radius(AS)2, and so radius(AS)2/K is a bound on the additive error.
As mentioned, for the special case of convex approximation, such a bound was
shown by Maurey[Pis81] in a similar way. The bound (20) is slightly sharper,
with respect to the constant, than the bounds shown for Algorithm 1.1 and
Algorithm 1.2. For some problems, it could be that (19) on the previous page,
the average of the p2

i as weighted by x∗i , gives a better bound than simply using
maxi p2

i . A specific useful example of this is given below; heuristically, this
implies that sparse solutions exist that are significantly better than the greedy
constructions here can find. However, for MEB the xi are nonzero only for the
pi with largest p2

i , and so
∑

i p2
i x

∗
i for MEB will be radius(AS)2, implying that

the greedy algorithms do pretty well for MEB.
As an example of a problem where (19) on the preceding page can be helpful,

consider the quadratic problem where the objective function is

−
∑

i

(pi −Ax)2/n = −

[∑
i

p2
i /n− 2xT AT pi/n + xT AT Ax

]

= −

[[∑
i

p2
i /n

]
− 2xT AT Ae/n + xT AT Ax

]
,

for which the optimum x is e/n. That is, the problem is to minimize the sum of
squares of Euclidean distances to the pi, and the solution is the center of mass,
the coordinate-wise mean. The additive error, from (19) on the previous page,
is
∑

i p2
i /nK. We can assume, without loss of generality, that

∑
i pi = 0, and so

the optimum value of the objective function is −
∑

i p2
i /n, and the relative error

is 1/K. This observation is due to Inaba et al. [IKI94], and has been applied
to k-means clustering. The probabilistic choice in the above construction is for
this problem simply a uniform random sample of the pi.

Is there a deterministic construction that finds a sample of comparable qual-
ity?

3 Variations

A few variations of Algorithm 1.1 or Algorithm 1.2 suggest themselves. For
one, since h(x(k)) ≤ 1/(k + 3) by Theorem 2.2 on page 14, and the optimal α
minimizing (16) is 2g(x(k)) ≤ 2h(x(k)), we might avoid searching for α simply
by using αk := 2/(k + 3) at step k.

With this multiplier,

h(x(k+1)) ≤ h(x(k))− αkh(x(k)) + α2
k/4,

16



by (16) on page 14, and using g(x) ≥ h(x). Since for αk < 1 the right-hand side
is increasing in h(x(k)), it is maximized when h(x(k)) is at its maximum, which
inductively is no more than 1/(k + 3). We have

h(x(k+1)) ≤
1

k + 3
− 2

k + 3
1

k + 3
+

1
4

(
2

k + 3

)2

=
1

k + 4
− 1

(k + 4)(k + 3)2

< 1/(k + 4).

Thus searching for α is not necessary for the bounds to hold. Note that with this
approach, the function f(x) need only be evaluated n times at the beginning,
to determine x(0); only gradient evaluations are needed thereafter.

Such lazier algorithms have already been proposed for special cases, for ex-
ample by Li and Barron [LB00], and by Bădoiu and Clarkson [BC03]. (It may
only be coincidental that subgradient and stochastic gradient algorithms also
often are described using a step size that decreases as 1/k.)

The primal-dual approximation bounds of Theorem 2.3 on page 14 can also
be attained using a fixed αk sequence: choose αk = 2/(k + 3) as before, for
k ≤ K := d1/εe, and then use αk = 2ε for k > K. If g(x(k) ≥ ε, for all
k = K . . . 2K, then h(x(2K)) < 0, since h(x(k+1)) ≤ h(x(k)) − ε2 for k > K.
Therefore some k ≤ 2K must have g(x(k)) < ε.

Another variation is to work harder within the current face: that is, optimize
the coordinates that are currently nonzero, before making another coordinate
nonzero. For example, the sparse greedy algorithm itself could be used for
several “minor” steps, choosing among the current set of nonzero coordinates,
obtaining a solution that is close to optimal, subject to the restriction of being
on the current k-face. Heuristically, this suggests that more “bang for the buck”
would be obtained at each major step, but improvements in provable bounds
don’t seem to have been obtained. Such a harder-working algorithm is helpful,
however, for showing the existence of coresets, as discussed next. (This variant
algorithm is not far from orthogonal matching pursuit, as discussed in § 8 on
page 30.)

4 Coresets

The term “coreset” has many different technical meanings; the most natural
definition for this paper encompasses some, but not all of them. To give that
definition, first we need to give notation for some restricted versions of the
primal and dual problems.

As in § 1.2 on page 6, for N ⊂ {1, 2, . . . n} let SN denote the face of S that is
the convex hull of {e(i) | i ∈ N}. Then the Wolfe dual of the restricted primal
problem

max{f(x) | x ∈ SN}
is minx wN (x), where

wN (x) := zN (x) + f(x)− xT∇f(x),
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Algorithm 4.2. Given concave function f(x), ε > 0:

Let i′ := arg maxi f(e(i)) and N0 := {i′};

For k = 0 . . .∞, find Nk+1 from Nk as follows:

if g(xNk
) < ε return xNk

;

i′ := arg maxi∇f(xNk
)i;

Nk+1 := Nk ∪ {i′};

Figure 4. Finding a coreset for f(x)

and zN (x) := maxi∈N ∇f(x)i. We let xN denote the optimum for the restricted
primal; this is also the optimum for the restricted dual.

The dual of the restricted primal has fewer constraints than the dual to the
full problem, and so wN (x) ≤ w(x), and in general wN (x) ≤ wN ′(x) for N ⊂ N ′.
This is consistent with an analogous relation for the primal problem: the more
restricted the domain over which f is maximized, the smaller that maximum
can be.

Theorem 2.3 on page 14 shows that Algorithm 1.1 can be used to find a point
x′ with few nonzero entries, and with primal and dual values close to optimal.
That is, x′ is a kind of sparse certificate regarding the optimum value of the
optimization problem. A coreset is combinatorial version of such a certificate.

Definition 4.1. Given a concave function f(x), an ε-coreset for the problem
maxx∈S f(x) is a subset N of the coordinate indices so that w(xN ) − f(xN ) ≤
2εC∗

f .

(Note that the asymptotic nonlinearity C∗
f is used, not the global nonlinear-

ity Cf . This, with the factor of 2, implies that an ε-coreset for MEB by this
definition is a (1/(1 + 1/ε))-coreset by prior definitions [BC], that is, nearly the
same. As discussed in § 2.2 on page 11, C∗

f ≤ Cf ≤ 4C∗
f for quadratic problems,

and for the MEB problem, C∗
f is equal to the square of the radius of the MEB.)

It might be thought that the set N of indices of the nonzero coordinates of a
sparse primal/dual approximate solution x′ is a coreset. This is not necessarily
true, as it may be that w(xN ) � w(x′). A patch for this is to use a variant
of Algorithm 1.1, for which each iterate x(k) is the optimum for its correspond-
ing k-face of S. This ensures that xN is a “canonical” approximate solution,
determined by N .

The variant algorithm is shown in figure 4. Here is a theorem whose proof
uses it.

Theorem 4.3. Let f(x) be a concave function. Algorithm 4.2 returns a set Nk

indexing a (2εCf/C∗
f )-coreset, for k ≤ 2K, where K := d1/εe. This requires

O(ndK + KQ(f,K)) time, assuming evaluation of ∇f(x) needs O(nd) time,
for some d, and where where Q(f,K) is the time needed to find the restricted
maxima xNk

for k ≤ 2K. The returned set is a ε(2 + o(1))-coreset, as ε → 0,
assuming Cf (Sγ) = (1 + o(1))C∗

f as γ → 0.
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Proof. Algorithm 4.2 on the previous page computes an iterate xNk
such that

f(xNk
) is at least as large as that for Algorithm 1.2 on page 8, and hence also

for Algorithm 1.1. Since Algorithm 4.2 uses the same choice of new coordinate
i′ as Algorithm 1.1, it follows that Theorem 2.2 on page 14 and Theorem 2.3
on page 14 apply to it also, so that some Nk for k ≤ 2K has g(xNk

) ≤ ε.
Since each iterate xNk

of Algorithm 4.2 is an optimum for Nk, it follows that
the Nk with g(xNk

) ≤ ε is a (2εCf/C∗
f )-coreset, using the definitions (5) on

page 5 and Definition 4.1 on the preceding page of g() and coresets. The time
bound follows from Theorem 2.3 on page 14 and the structure of Algorithm 4.2.
The last statement uses the convergence of xNk

and the asymptotic relation
discussed in § 2.2 on page 11. �

Algorithm 1.1 and Algorithm 1.2 can also be used to create coresets in the
following more direct way, but the bounds are worse.

Theorem 4.4. After K2 iterations of Algorithm 1.1 (or Algorithm 1.2 on
page 8), where K := 1/ε, the coordinate set NK2 indexing nonzero entries of
x(K2) corresponds to a (2εCf/C∗

f )-coreset.

Proof. From Theorem 2.1 on page 13, since h(x) ≥ 0 for all x, it must hold that
g(x) ≤

√
h(x) for all x ∈ S. Moreover, by definition f(xNk

) ≥ f(x(k)), and so
h(xNk

) ≤ h(x(k)). (Here again, xNk
denotes the optimum in SNk

.) Since by
Theorem 2.2 on page 14, the value h(x(K2) ≤ 1/(K + 3)2, it follows that

g(xNK2 ) ≤
√

h(xNK2 ) ≤
√

h(x(K2)) ≤ 1/(K + 3) < ε,

and so NK2 is an (4εCf/C∗
f )-coreset, using the definitions (5) on page 5 and

Definition 4.1 on the previous page of g() and coresets. �

4.1 Approximation and Coresets Within Convex Hulls

The main case of interest for the above coreset results is for functions f(x)
that have the form f(x) = f̂(Ax), where A is a d × n matrix for some d, and
f̂ : IRd → IR. Here a subset N of the indices corresponds to a subset of the
columns of A; as discussed below, for the MEB problem, the columns of A
correspond to the input points, so a coreset for MEB is a subset of the input
points.

For functions of the form f(x) = f̂(Ax), the gradient

∇f(x) = AT∇f̂(Ax),

so that

f(x)− xT∇f(x) = f̂(Ax)− xT (AT∇f̂(Ax))

= f̂(Ax)− xT AT∇f̂(Ax)

= f̂(c)− cT∇f̂(c),
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for c := Ax. The dual problem (8) becomes

min
z∈IR,c∈IRd

z + f̂(c)− cT∇f̂(c)

subject to ze ≥ AT∇f̂(c)).
(21)

We can write this as minc ŵ(c), with ŵ(c) := ẑ(c)+ f̂(c)− cT∇f̂(c), and ẑ(c) :=
maxi(AT∇f̂(c))i. Note that ŵ(Ax) = w(x), just as f̂(Ax) = f(x).

The above results imply approximation results for f̂ , over AS := {Ax | x ∈
S}, that is, the convex hull of the columns of A.

The following is a corollary of Theorem 2.2 on page 14, and is the main part
of Theorem 3.1 of [Zha03].

Theorem 4.5. If f(x) = f̂(Ax), where f̂ : IRd → IR is a twice differentiable
concave function, then with Cf = − 1

2 supa,b∈AS
ã∈[a,b]

(b− a)T∇2f̂(ã)(b− a), there is

a k-face S′ of S and a point a ∈ AS′ such that

f̂(a)− inf
b∈AS

f̂(b) ≤ 4Cf/(k + 3).

Proof. The function f(x) := f̂(Ax) is concave if f̂ is, and the theorem follows
from Theorem 2.2 on page 14 and the bound (11) on page 12 for Cf . �

4.2 Quadratic Functions and Coresets for MEB

If f(x) is a quadratic concave function, that is, has the form

(22) f(x) = a + xT b + xT Mx,

where a ∈ IR, b ∈ IRn, and M is a negative semidefinite n × n matrix, then
f(x) = f̂(Ax), where:

f̂(c) := a + cd − c̃T c̃

c̃ := [c1, . . . , cd−1, 0]T (a column vector)

A :=
[

Ã

bT

]
M = −ÃT Ã

Ã is (d− 1)× n, for some d.

Note that such a Ã can always be found, and the given f̂() is concave.
Thus coresets for quadratic concave functions correspond to columns of A,

and give bounds also for the dual problem

min
z∈IR,x∈IRd

z − xT Mx

subject to z ≥ max
i

(b + 2Mx)i.
(23)
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As discussed in § 2.2 on page 11, the nonlinearity measure Cf is bounded by
the squared diameter of AS, which is bounded by the squared diameter of the
MEB of the columns of A, and when f corresponds to the MEB problem, C∗

f is
the squared radius of the MEB. Thus Theorem 4.3 on page 18 implies that an
ε-coreset exists for MEB, of size close to 4/ε.

It was claimed near Definition 4.1 on page 18 that the general definition of
an ε-coreset specializes for MEB to something close to the standard definitions
for MEB. For example, one definition (“alternate” in [BC]) is that r(cN ) ≤
rN (cN )/(1 − ε), where r(cN ) =

√
ŵ(cN ) is the distance of cN to the farthest

input point pi, and rN (cN ) =
√

ŵN (cN ) is the distance of cN to the farthest
point indexed by N ; that is, if the smallest ball containing the points indexed
by N is expanded by a factor of 1/(1 − ε), the resulting ball contains all the
points.

To show this relation: suppose N is an ε-coreset for MEB, by Definition 4.1
on page 18. Then w(cN ) − wN (cN ) = w(cN ) − f(cN ) ≤ 2εC∗

f . Since here
C∗

f = w(c∗) = r(c∗)2, we have

r(cN )2 − rN (cN )2 ≤ 2εr(c∗)2 ≤ 2εr(cN ),

or
r(cN )2 ≤ rN (cN )2/(1− 2ε),

or
r(cN ) ≤ rN (cN )(1 + o(1))/(1− ε),

as ε → 0, since

1
1− 2ε

=
1

(1− ε)2

(
1 +

ε2

1− 2ε

)
≤ 1

(1− ε)2

(
1 +

ε2

2(1− 2ε)

)2

.

5 Coresets Via “Away” Steps

The algorithms presented so far have been monotone, in the sense that once a co-
ordinate of x becomes nonzero, it remains so, or at least, is not specifically made
to be zero again. However, a few known algorithms have been non-monotone:
an algorithm for optimal MEB coreset construction [BC] preserves the number
of non-zero entries: the number of non-zero entries is some K, and in a single
step, a new coordinate is made non-zero, and then another coordinate is set to
zero, preserving the number of non-zero coordinates. It is shown that progress
can be made in this way, by showing that a quantity similar to g(x) is large
enough.

Another algorithm, by Todd and Yildirm [TY05], discusses a version of
Algorithm 1.1 with an additional possible “away” step: it considers whether
reducing a non-zero variable, not necessarily to zero, might improve the objective
function. If so, the reduction is done. No provable improvement is shown,
however, by including such a step.
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Algorithm 5.1. For concave f(x) and ε > 0:

Let i′ := arg maxi f(e(i)) and N := {i′};

Repeatedly update N as follows:

if g(xN ) ≤ ε/2 return xN ;

i′ := arg maxi∇f(xN )i;

N := N∗ := N ∪ {i′};
if |N∗| > d1/εe:

x := xN∗ ;
i′′ := arg mini∈N∗ xi;
N := N∗∗ := N∗ \ {i′′};

Figure 5. A coreset algorithm with “away” steps

It is shown next that a constant-factor improvement in provable coreset size
is obtainable, by including a step that reduces a non-zero variable to zero. The
improvement is almost as sharp as the optimal MEB coreset result[BC], and
gives an improvement over Theorem 4.3 on page 18 in the general setting.

The algorithm, shown in figure 5, is simply Algorithm 4.2 on page 18, with
an additional possible “away” step, where a coordinate is set to zero. Since the
points x(k) are always the optimum points xN of some simplex SN , with vertices
{e(j) | j ∈ N}, the algorithm is given in terms of maintenance of the set N .
The sets N∗ and N∗∗ are defined only to aid discussion of N at different points
in the algorithm.

For |N | ≤ d1/εe, the algorithm proceeds as in Algorithm 4.2 on page 18.
When |N | > d1/εe, the “away” step finds an index i′′ to remove from N . Note
that before finding i′′, the optimum for the current N is found; this is helpful
in the analysis.

Theorem 5.2. For ε > 0 and concave f(x), Algorithm 5.1 returns an (εCf/C∗
f )-

coreset. The returned set is an ε(1+o(1))-coreset, as ε → 0, assuming Cf (Sγ) =
(1 + o(1))C∗

f as γ → 0.

Proof. Since Algorithm 5.1 exits with a similar termination condition as Algo-
rithm 4.2 on page 18, similar conditions as in Theorem 4.3 on page 18 hold
for the index set N that it returns. It remains to show that the algorithm
terminates.

Theorem 2.1 on page 13 shows that addition of i′ to N results in x = xN∗

with

(24) h(x) ≤ h(xN )− g(xN )2,

for |N | ≤ K, so inductively h(xN∗) ≤ 1/|N∗| for |N∗| ≤ K.
When |N∗| > K, the “away” step is also done. Since f(xN∗∗) ≥ f(y) for

any y ∈ SN∗∗ , this inequality holds in particular when y = x − α′′(e(i′′) − x),
where α′′ := xi′′/(1− xi′′).
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For x = xN∗ as in the algorithm, since x has at least K + 1 nonzero entries,∑
j xj = 1, and x ≥ 0, it must hold that xi′′ ≤ 1/(K + 1), and so

(25) α′′ =
xi′′

1− xi′′
≤ 1/(K + 1)

1− 1/(K + 1)
= 1/K.

Also, since x = xN∗ is optimal for N∗, its duality gap is zero:

0 = wN∗(x)− f(x) = zN∗(x)− xT∇f(x) = max
i∈N∗

∇f(x)i − xT∇f(x).

Since xT∇f(x) is a convex combination of the coordinates of ∇f(x), this can be
true only if all coordinates∇f(x)i with i ∈ N∗ must be equal to maxi∈N∗ ∇f(x)i =
xT∇f(x). In particular,

(26) e(i′′)T∇f(x) = ∇f(x)i′′ = xT∇f(x).

Thus

f(xN∗∗) ≥ f(x− α′′(e(i′′)− x))

≥ f(x)− α′′(e(i′′)− x)T∇f(x)− (α′′)2Cf def. of Cf

= f(x)− (α′′)2Cf by (26)

≥ f(x)− Cf/K2. by (25)

Putting together this relation and (24) on the previous page, and referring
to N at the beginning of the loop:

h(xN∗∗) ≤ h(x) + 1/4K2 def. of h, and above

≤ h(xN )− g(xN )2 + 1/4K2 by (24)

< h(xN )− ε2/4 + 1/4K2, by test on g(xN ).
≤ h(xN ), K > 1/ε.

and so an iteration reduces the value of h(). Since the value of h(xN ) (at the
beginning of each iteration) is decreasing, any given set N is seen only once,
and so eventually the loop terminates with g(xN ) ≤ ε/2, and N of size at most
K specifies a coreset with the properties as claimed. �

As remarked in § 1, as applied to MEB this result is best possible in the
leading term [BC].

6 Tail Estimates for Random Data

In the case of optimizing within a convex hull, so f(x) = f̂(Ax) for a concave
function f̂() and d × n matrix A, suppose the columns pi, i = 1 . . . n of A
are random variables, independently and identically distributed. Consider an
ε-coreset N , so that

w(xN )− f(xN ) = z(xN )− xT
N∇f(xN ) ≤ 2εC∗

f .
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Since z(xN ) ≥ ∇f(xN )i = pT
i ∇f̂(AxN ) for all i, this condition implies that

pT
i ∇f̂(AxN ) ≤ xT

N∇f(xN ) + 2εC∗
f ,

that is, all the pi lie in a particular halfspace with normal vector ∇f̂(AxN ). Let

H(x) := {p ∈ IRd | pT∇f̂(Ax) ≤ xT∇f(x) + 2εC∗
f},

so that all the pi lie in H(xN ). For any fixed x ∈ IRn, the fact that all the
pi ∈ H(x) would suggest that H(x) contains most of the probability mass
of the distribution of the pi: if that mass is 1 − m, then the probability is
(1 − m)n ≤ exp(−mn) that all the points pi appear in H(x). So, unless the
mass m in the complement of H(x) is small, it is unlikely that all pi will be in
H(x). Similarly, for any given choice of N , and letting s := |N |, the probability
is (1 −m)n−s ≤ exp(−m(n − s)) that all pi ∈ H(xN ), for all i /∈ N , and when
H(xN ) ≥ 1 − m. Since there are only

(
n
s

)
possible N , we almost have the

following theorem.

Theorem 6.1. For f(x) = f̂(Ax), where the columns of A are i.i.d., for a
coreset N of size s, with probability 1−δ the probability mass in the complement
of H(xN ) is no more than (log(1/δ) + s log(ne/s))/(n− s).

Proof. We use the union bound, so that the probability of failure at most
(
n
s

)
(1−

m)n−s, together with the bounds
(
n
s

)
≤ (ne/s)s and as above (1 − m)n−s ≤

exp(−m(n − s)). It is thus enough to pick a value of m large enough that
(ne/s)s exp(−m(n − s)) ≤ δ, which on solving for m yields the bound of the
theorem. �

A similar result, in a setting where regions are “defined” by a small num-
ber of objects, implies the existence of probabilistic algorithms for a variety of
geometric problems [Cla88, Cla87], and is called the compression lemma in the
learning theory literature[LW86, FW95].

7 Specific Cases

The following subsections discuss some specific applications; the discussions of
convex approximation, Adaboost, and Lv approximation follow Zhang[Zha03],
and serve simply to translate results of that paper for Algorithm 1.2 into results
for Algorithm 1.1 in the notation of this paper. The discussion of kernel methods
follows that of Tsang et al. [TKC05] to some degree.

7.1 Convex Approximation

For suitable matrix A and point p, consider the primal problem (1) where
f(x) := f̂(c) := −(c − p)2 with c = Ax; that is, the problem is to find the
convex combination of the columns of A of minimum distance to p. Via (21) on
page 20, and using ∇f̂(c) = −2(c− p), the dual objective function is

z + f̂(c)− cT∇f̂(c) = z − (c− p)2 + 2cT (c− p) = z + c2 − p2
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so the dual problem is

min
z∈IR,c∈IRd

z + c2 − p2

subject to z ≥ max
i
−2[AT (c− p)]i.

(27)

Although the above considers only the finite-dimensional case, and not more
general functional approximation, as discussed by Zhang [Zha03], the barriers
to such a generalization are not enormous.

As shown by Zhang[Zha03], and also discussed in § 2.2 on page 11, the
measure Cf here is the square of the diameter of the MEB of the columns of A,
and the asymptotic version C∗

f is the square of the radius. It is clear that 1.1 as
well as Algorithm 1.2 on page 8 can be used to obtain an approximate solution,
and that Algorithm 5.1 on page 22 can be used to show that coresets exist.

In contrast to some other problems considered in this paper, here the main
problem of interest is the primal problem, and the nature and significance of
coresets for the dual problem is perhaps mysterious: what do they mean here,
and what are they good for?

Here is a geometric interpretation. The corresponding optimum point cN has
a small duality gap: the gap is ẑ(cN )+ c2

N − p2− (−(p− cN )2) ≤ 4ε diam(AS)2,
or

4ε diam(AS)2 ≥ (max
i
−2[AT (cN − p)]i) + 2c2

N − 2cT
Np

= 2[cT
N (cN − p) + max

i
−pT

i (cN − p)]

= 2[(cN − p)T (cN − p) + max
i
−(pi − p)T (cN − p))]

= 2[(cN − p)2 −min
i

(pi − p)T (cN − p))]

or
(pi − p)T (cN − p)) ≥ (cN − p)2 − 2ε diam(AS)2,

for all i, or (pi−cN )T (cN−p) ≥ −2ε diam(AS)2. The boundary of the halfspace
H(cN , 0) := {q | (q − cN )T (cN − p) ≥ 0} is the hyperplane passing through cN ,
and normal to cN − p. The given halfspace is on the side away from p. The
points pi thus are all in a halfspace H(cN , β), bounded by a hyperplane parallel
to H(cN , 0), but translated by β(cN − p), where

β := −2ε diam(AS)2/(cN − p)2 = 2ε diam(AS)2/f̂(cN ).

That is, cN provides an immediate proof that the pi cannot have a convex
combination much closer to p than cN is. A use of MEB coresets is the detection
of outliers, the densest-ball problem discussed in § 1.2 on page 6; here, they could
be used to detect inliers. That is, suppose we want to find that 10% of the points
pi such that deleting them makes the solution as much worse as possible, that
is, decreases f(x) the most. We could simply try all

(
n

n/10

)
subsets, checking f

after removing each, but this is very slow. An approximate solution, for some
given ε > 0, would be to try all subsets N ′ of size 1/ε, checking if at least 10%
of the points pi are not in H(cN ′), choosing the cN ′ that has minimum distance
to p among all such cN ′ .
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7.2 Kernel Methods

Kernel methods, and in particular support vector machines (SVM), are a popular
approach to classification, regression, and outlier detection, and training them
is an optimization problem that can be solved using the methods discussed here.
For example, for hard margin SVM, a dataset comprising pi ∈ IRd, yi ∈ {−1, 1},
for i = 1 . . . n, is given, and the training problem is to find

min
c∈IRd,ρ∈IR

ρ + cT c/2

subject to ρ ≥ −yic
T pi, i = 1 . . . n,

(28)

if this problem is feasible. If ρ < 0 and vector c are feasible, then they specify a
hyperplane {x | cT

∗ x = 0}, that separates the pi with yi = +1 from those with
yi = −1. The problem is to make the margin, which is the minimum distance
G(c) := −ρ/‖c‖ of any point pi to that hyperplane, as large as possible. This
problem is a scaled version of the convex approximation of § 7.1 on page 24,
with p = 0.

While many formulations of this problem fix ρ and minimize cT c, or fix
cT c = 1 and maximize ρ, the same margin is obtained in the formulation here:
for any given feasible pair c, ρ, and value β > 0, the pair βc, βρ is also feasible,
and the value of β that minimizes βρ + β2cT c/2 is β̃ = −ρ/cT c, yielding the β-
scaling-invariant β̃ρ+ β̃2cT c/2 = −ρ2/2cT c, proportional to the negative square
of the margin. That is, the optimal value of the training problem is the one half
the negative square of the margin.

The dual to (28) is

max
x∈IRn

− xT AT Ax/2

subject to x ∈ S,
(29)

where A is the d × n matrix whose columns are the vectors yipi. (This can be
read off from (27) on the previous page, for example.) That is, training SVM,
for this version, is a special case of convex approximation: finding x ∈ S so that
the vector Ax is as close to the origin as possible.

(Indeed, at some cost in n, it is well-known that a broader class of SVM
training problems are dual to a problem of the same form: use a d× n′ matrix
A′, whose columns are all those possible of the form pi − pj , where yi = 1 and
pj = −1. The polytope A′S is the Minkowski difference of the convex hulls of
the “+” points and the “−” points, and the length of the shortest vector in A′S
is the minimum distance between those two polytopes. Although n′ may be
as large as n2/4, this does not affect results regarding coreset sizes; also, other
formulations do not involve such a blow-up in A.)

This training problem for SVM fits in the framework here, both for algo-
rithms and for coresets. Of particular importance for SVM, the algorithms
depend on d, and the data points pi, only through the need to evaluate AT c, or
equivalently, the dot products cT pi. As is well-known, such dot products can
sometimes be evaluated efficiently even when d is very large or infinite.
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As for other quadratic problems, the quantity Cf is at most diam(AS)2/2
(with the division by two due to the scaling). By Theorem 2.3 on page 14, Algo-
rithms 1.1 and 1.2 find x(k̂), and corresponding c = Ax and ρ = maxi−yic

T pi,

with k̂ ≤ 2/ε, such that, with x := x(k̂) and G(x) the margin of separation,

−G(x)2/2 ≤ −G(x∗)2/2 + 4ε diam(AS)2/2,

or
G(x)2 ≥ G(x∗)2(1− 4ε diam(AS)2/G(x∗)2),

or
G(x) ≥ G(x∗)(1− 3ε diam(AS)2/G(x∗)2)

for ε diam(AS)2/G(x∗)2 ≤ 2/9.
A similar argument using Theorem 5.2 on page 22 shows that there is a set

of points indexed by N , of size (1 + o(1))/ε, so that

G(xN ) ≥ G(x∗)(1− ε diam(AS)2/G(x∗)2)

as ε → 0. The previous bound on the size was 64/ε [HPRZ07].
Putting this condition together with Theorem 6.1 on page 24, we can say the

following: if there is coreset N with G(xN ) > 0 and if the points pi are i.i.d.,
then with probability 1 − δ, the probability mass of the region H(cN ) := {p ∈
IRd | ρ < −yic

T
Np} is at most log(1/δ) + s

n−s log(ne
s ), where s := |N | need be

no more than (1 + o(1)) diam(AS)2/G(x∗)2. Since for a classifier based on xN ,
only the points in H(cN ) can be misclassified, this gives an upper bound on the
error probability of such a classifier. This result is similar to that derived by
Graepel et al. for perceptrons [GHW00]. This is not surprising: the perceptron
algorithm is a greedy procedure akin to Algorithm 1.1, and Novikoff’s mistake
bound (see [GHW00] for example) implies the existence of sparse solutions to
an optimization problem.

Tsang et al.[TKC05] have shown that variations like hard-margin SVDD,
one- and two-class L2-SVM, and L2-SVR can also be put into the framework
here. As discussed in the introduction, the approximation algorithms given here
do not require, as for coresets, the exact solution of small problem instances. It
remains to be seen, however, whether such simplification is helpful in practice.

7.3 Adaboost

Boosting refers to the improvement of a collection of classifiers by using a linear
combination of them. A collection of n classifiers is given, and d datapoints,
such that classifier i gives a value aji ∈ [−1, 1] for datapoint j, which has actual
classification rj ∈ {−1, 1}. The training problem is: for a given loss function
L(c, r), giving the cost making predictions c for classifications r, find x such
that L(Ax, r) is as small as possible. It is no loss of generality to assume that
the data is symmetric about the origin, that is, for every prediction aji for rj ,
there is a j− with aj−i = −aji and rj− = −rj . This implies that it is enough
to consider x ≥ 0, putting the problem nearly into the framework of this paper.
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The “ideal” loss function is perhaps L(c, r) = 1
d

∑
j Icjrj<0, where the indi-

cator function Is = 1 when s is true, and Is = 0 otherwise. That is, there is no
loss if cj and rj agree in sign, and a loss 1/d otherwise. This function is difficult
to work with, however, so proxies are often used. A popular one, for Adaboost,
is 1

d

∑
j exp(−Ccjrj), where C is a tunable parameter.

The training problem is then to minimize the loss, or equivalently to maxi-
mize f(x) := − log

∑
j exp(−C(Ax)jrj)/d, over x ∈ S.

(Training an Adaboost classifier is an instance of geometric programming
[BV04], often done with interior-point methods. However, it is also amenable
to the simpler approach here.)

The restriction to nonnegative x is no loss of generality, as mentioned, and
the restriction xT e = 1 simply amounts to an adjustment (or normalization)
of the parameter C. With c = Ax, as usual, f(x) can also be written as
f(x) = f̂(c) = − log

∑
j exp(−Ccjrj)/d.

The gradient of this f̂ is, using Vj := exp(−Ccjrj)/d,

∇f̂(x)j =
VjCrj∑

j Vj
,

and ∇f(x) = AT∇f̂(Ax), as usual. The i′ maximizing ∇f(x)i is thus readily
found.

To apply the results here, the value of Cf for this function f() needs to be
bounded. We will apply (11) on page 12, which requires a bound on −(b −
a)T∇2f̂(ã)(b− a)/2, for a, b ∈ AS and ã on a line through a and b, and in AS.

The following lemma will be helpful.

Lemma 7.1. Suppose function f̂ : IRd → IR has the form −γ(f̃(x)), where
f̃ : IRd → IR, like f̂ , and γ : IR → IR with γ′′(x) ≤ 0. Then for c, ã ∈ IRd,

−cT∇2f̂(ã)c ≤ γ′(f̃(ã))cT∇2f̃(ã)c.

Proof. We have
∇f̂(ã) = γ′(f̃(ã))∇f̃(ã),

and
∇2f̂(ã) = γ′′(f̃(ã))∇f̃(ã)∇f̂(ã)T + γ′(f̃(ã))∇2f(ã).

Thus here

−cT∇2f̂(ã)c = γ′′(f̃(ã))(cT∇f̃(ã))2 + cT γ′(f̃(ã))∇2f̃(ã)c

≤ γ′(f̃(ã))cT∇2f̃(ã)c,

as claimed, since the first term is always no more than zero. �

Applying this lemma to γ(x) = log x, and f̃(ã) =
∑

j exp(−Cãjrj) =
∑

j Vj ,
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we have

−(b− a)T∇2f̂(ã)(b− a) ≤ (b− a)T∇2f̃(ã)(b− a)∑
j Vj

=
(b− a)T (C2 diag(V ))(b− a)∑

j Vj
using r2

j = 1

≤ 4C2 using |aji| ≤ 1

Here diag(V ) is the diagonal matrix with diag(V )jj = Vj .

7.4 Convex Approximation in Lv

When approximating a point p by a convex combination Ax, for x ∈ S, it may
be of interest to use a different measure of distance than the Euclidean norm;

a more general setting is to use Lv norms, ‖p‖v :=
(∑

j |pj |v
)1/v

. (Usually
Lp norms are discussed, but this collides with our notation a bit, so here v is
used for the numerical parameter instead.) The distance ‖Ax − p‖v has the
same minimum as the maximum of the function f(x) := −‖Ax − p‖v′

v , where
v′ := min{2, v}, and the latter functions are considered here. As usual, consider
f(x) = f̂(c) = −‖c− p‖v′

v , where c = Ax.
For v ≥ 2, apply Lemma 7.1 on the preceding page with γ(x) = x2/v, and

f̃(ã) = ‖ã‖v
v, obtaining

−(b− a)T∇2f̂(ã)(b− a) ≤ γ′(f̃(ã))cT∇2f̃(ã)c

= (2/v)(‖ã‖v
v)2/v−1

∑
j

(b− a)2j [v(v − 1)|cj − pj |v−2

= 2(v − 1)
∑

j

(b− a)2j
|cj − pj |v−2

‖ã‖v−2
v

= 2(v − 1)
∑

j

(b− a)2j

(
|cj − pj |v∑
j |cj − pj |v

)1−2/v

≤ 2(v − 1) diam(AS)2.

Thus Algorithm 1.1 can be used for Lv approximation, with similar bounds, for
∞ > v ≥ 2.

For 1 < v < 2, unfortunately Cf cannot be found; however, an analog can
be obtained, via an analog of (9) on page 11, with 1/αv instead of 1/α2. This
allows an analog of (18) on page 14 in which h(x(k))2 is replaced by h(x(k))v,
which leads to an additive error of O(1/εv−1) instead of O(1/εv). As shown
by Donahue et al. [DGDS97], an incremental approach like Algorithm 1.1 or
Algorithm 1.2 cannot work for the v = 1 case.
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8 Conclusions

A related line of research is concerned with finding best m-term approximations,
finding sparse x minimizing (p − Ax)2, where x ∈ IRn need not be in S. The
orthogonal matching pursuit algorithm, which is very close to Algorithm 1.1 (in
particular, the “harder working” version described in § 3 on page 16), has been
shown to yield x that are good relative approximations, compared to the best
x with the same sparsity [Tro04], for suitable A. A sufficient condition for A
to be suitable is that AT A = I + E, where I is the identity matrix and E has
entries that are all small in magnitude.

Acknowledgement. I am grateful to Kasturi Varadarajan for pointing out
an error in the probabilistic proof of § 2.4, and other helpful remarks.
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