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The idea here is that with probability at least ¢,,, the problem of building a celltree
is split into two problems, each for at least k,, and no more than n — k,, objects.
The smaller m is, the more evenly the problem is split up, and the smaller the m
term in the time bound becomes. However, as m approaches 1, the lower bound
available for ¢,, will approach 0. Therefore, the value of m must be chosen with
care: We will show that m =~ 2¢ is about right.

Proof of Lemma 3.3. Split the sum bounding 7, by

T, < Z ag| Ty + Tomryi] ¥ Z [Tk + To-tt1] + Cin.
l<k<km ' ko <k<n—k,n
n—knfzk(ﬂ

We will use proof by induction, and assume the lemma holds for all n! < n. The
left term is bounded by (1 — ¢,,)Canlinn, when n is large enough that this bounds
the time required when Build _Celltree_Deterministically is called. To bound the
right term, we use the fact that alna + (s —a+ 1) In(s —a + 1) is decreasing in a
for a < (s +1)/2 and increasing in a for a > (s + 1)/2. This implies that for any k
with k,,, <k <n -k,

khlk+ (n—k+1)]n(n—k+1) S km,lﬂk1n_+ (ﬂ.-— I'I‘;'m +1)1D(‘ﬂ.—-km+ 1)0
Therefore
T, < Cin+ (1 - ¢)Conlnn + Codpy [k In ko, + (n — kyy + 1) In(n — &y -+ 1)].

We want to show that the latter quantity is less than Conlnn. That is, we want
to show that

nlnn > ﬂn + kyInk,y, +(n— kg + 1) In(n — &y, + 1),
Ca¢

It will suffice to show that

nlnn > Cf n+ kpInk, + (n -k, +1) In(n — k,, + 1),

2¢m

or equivalently

nlnn > Cf n+ky[nk, —In(n -k, +1)] 4+ (n+ 1) In(n — k,, + 1).

2¥¢m

Assuming that ¢/m < 1/2, the middle term can be dropped, so this will be true

when

nlnn > CC} n+ (n+ 1) In(n — ky + 1),

2%m
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or equivalently

Cg ll’l (1 —f‘

—

B bm

km — 1 In(n -k, +1) _ Cy
... Nl -9 vy L
n~km—|—1> Ca

Since

w1y Fmn=1 Yo kn—1 (1 ky—1
n n—kn,+1) " n—k,+1 2n—ky,+1)°

and since for n > 16m/elnn with ¢/m < 1/2,

i, is sufficient to have

to bound T, by Conlnn, for n large enough. =
We want to show that (E»m is bounded away from zero. Define a light cell as follows:

A quadtree cell is light if it contains less than ¢/m of the input objects, and
is a maximal such cell with respect to containment.

1T all of the light cells each contain less than an ¢ proportion of the sample objects,
then the splitting cell found cannot contain fewer than ne/m objects. Suppose
also that the minimal cell I, with more than a 1 — ¢/m proportion of the input
objects, contains more than a 1 — € proportion of the sample objects. In this case
the splitting cell found will also have less than (1 —e/m)n objects. The probability
of these events occurring is clearly positive and independent of n, and provides a
positive lower bound for (,;Sm.

A more precise lower bound can be given for ¢,,,. The following simple lemma will

be needed.,

Lemma 3.4. Given any two light cells, the probability that one of them
will contain at least ¢ of the sample objects is increased by moving an object
from the lighter to the heavier of the two (or either way if they have an equal
number of objects).

Proof. Observe that il one light cell contains yn objects and another contains én
objects, with 4 > 6, then the chance f(y) that both will contain less than € of the
sample objects is decreasing in v, for fixed v+ 6. We can see this as follows. If the
two cells contain a total of &k sample objects, then

o=, £ (%) ()™

k—ea<j<es
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(It can be assumed that |es] <k < 2|es| — 1, since otherwise the given probability
is 1 or 0.) The derivative of this quantity with respect to 7, after removing a
positive factor and rearranging, is

k—1 : : 2 : ;
= X ( : )k'ﬁ"‘é"" - (k _ i) ko 657177,
k—es<j<es J J

which telescopes to _
k—1 k‘Tk“LmJtSk—EGSJ (62'_63]—1—k . 12L€8J“~1"‘k> .
k — |es]
This quantity is negative, for 4 > 6, and further f”(5) is negative. The lemma
follows. =

(Continuing the proof of Theorem 3.2) From Lemma 3.4, it follows that ¢, is
minimized when all but at most one of the light cells contain |en/m| of the objects.

We can now prove a lower bound for qam. Note that g@m is at least as large as the
probability that H contains all of the sample objects, times the probability that
each of the light cells L ... L, contained in H has less than ¢ of the sample objects.
That is, letting A be the number of objects in H:

-~ e s 5
(l{) 2 hns ( )/\klAkzo-.Akv
m ( / ) Uskz,w(w k]_,_k'z,...,kq y
where E.lSsiSv k; = s, and A = |en/m]|/h. It follows that
" ) iy
b2 3% ot ) ()
" “E%:{és kiykz, .. ky v ’

since v, the number of light cells, is at most [n/|en/m]|]. Further,

0<k;<es =
s! Z 1
ot G bt kilkd ...k,
s! (v
)
v!
m(v — s)lv®

By using Stirling’s approximation and rearranging, this is greater than

0 (R_T) (1 o ((vis)))) ’
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Since s > 2/e = 2(24+1 + 1), this implies that with probability ¢, the sample
objects will be chosen in such a way that the splitting cell chosen will have at least
ne/m and no more than n(1 — ¢/m) sites, where ¢/m = Q(2724), as d — co. By
Lemma 3.3, therefore, T;, is O(nlogn), with the constant factor no worse than
exponentially dependent on the dimension d. a

as v — s — o0o. If v is chosen as (s2 + s)/2, then b > e 1(1+0(1/s)), as s — oo.

§3.2 Using a Celltree

Having built a celltree, we want to use it to solve the all nearest neighbors problem.
In this section, modifications to algorithm ANN, are described that result in ANN,
an algorithm that solves the all nearest neighbors problem in linear worst-case time,
given the celltree for the input sites. This algorithm is described and shown correct
in §3.2.1.

With a celltree available, each step of the refinement process of ANN, can be
performed in a time linear in the number of quadtree cells processed at that step.
It is no longer necessary to examine every site to determine the cell it occupies. In
§3.2.2, it is shown that indeed only O(1) time is required for every quadtree cell
that ANN_. examines.

However, a refinement step cannot simply use the celltree children of the current
set of cells, rather than the quadtree children. If this were done, NN candidate
sets would be maintained between cells that are of arbitrarily different sizes, and
Lemma 2.3 could not be guaranteed. In ANN ., it will be necessary in the course of
a computation to process more quadtree cells than are in the input celltree. That
is, the tree of cells examined by ANN . will be less “branchy” than a celltree. On
the other hand, as shown in §3.2.2, if there are &k internal nodes (cells) at some level
of the computation tree, then there will be (1 + )k nodes after a constant number
of generations, for some g > 0. (By “internal nodes” is meant cells containing
more than onc site, that is, cells that are not leaves.) This fact implies that ANN,
examines only O(n) quadtree cells, for input with n sites. These two [eatures of
the algorithm - the guaranteed linear size ol the computation tree and the constant
amount of work per internal cell - yield the linear time bound.

3.2.1 Algorithm ANN_

As with procedure Find_MST_Fdges, we will use the idea of a neighbor-connected
component of equal-sized quadtree cells. Recall that two cells are neighbor-connected
if they share at least one corner, and a set of cells is neighbor-connected when there
is a path of neighbor-connected cells between any two cells in the set. Suppose °
that at a certain generation in the refinement process, with a set S of equal-sized
quadtree cells, we determine the neighbor-connected components of S. Then any
such component P is isolated [rom the rest of the cells, in the sense that every cell
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in P is at least one cell side length away from all the cells not in P. This isolation
allows us to split up the ANN problem between neighbor-connected components,
due to the following fact:

Lemma 3.5. Let A and B be quadtree cells with the same side-length r. Let
V denote those sites in A that have nearest neighbors in B. If dpy, (A4, B) >
7, then |[V| = O(1), with the constant depending on the dimension. Further-
more, a superset of V' may be found in O(1) time.

Proof. An example is shown in Figure 3.4. Suppose that C is a descendent cell
of A with Diameter(C) < r. Il C contains more than 1 site, then all of its sites
have nearest neighbors closer than r, and therefore not in B. Let Looking_In(A, B)
be the set of all leaf cells descendent from A with diameter no smaller than r. Then
the set of sites in Looking_In(A, B) is a superset of V', contains O(1) sites, and can
be found in O(1) time. &

| |

A B

Figure 3.4. Distant cells form almost separate problems.

This lemma implies that
PU [UCE P,D¢P,DESs LDOFG?:RQ_I?’L (D, C)]

is “sell-contained,” and only sites in that set have nearest neighbors in P. This
obscrvation forms the basis of ANN ., shown in Figure 3.5. The algorithm is called
with {7'} as input, for a celltree root 7'. It proceeds recursively on the components
of quadtree children of the input component.

The basic processing of ANN, is the same as that of ANN,. However, the com-
putations are pul in terms of NN_Set™'(C), for each cell C in a component.
As before, this set of cells contains all sites that might have nearest neighbors
in C. Also defined for cach cell C is NN_Distance(C), an upper bound on the
distance to the nearest neighbors of sites in C. It is assumed that when the
algorithm is called for celltree root T, NN_Set™*(T) has been set to {I'}, and
NN_Distance(T) = Diameter (T). (Here assuming that T contains more than one
site.)

Just prior to a recursive call for a component, the procedure Shrink is called for it.
Note that in ANN,, the quadiree children of a cell are used, and not the celltree
children. Clearly these quadtree children may be found in O(1) time per cell, given



3.2. USING A CELLTREE 43

procedure ANN (P : Set_of_Cells);
co assumes celltrees for cells in P constructed oc;
co assumes NN_Sites (D) set to empty for all leaf cells D oc;

begin
Make ncighbor-connected components P; of quadtree children of P;

co Initialize NN_Set ~! for children. oe;
for each Pl- do for C € F; do
NN_Set ~1(C) « Children(NN_Set ~ Parent(Cl)]},
ifCisa lt.a.f then NN_Set~1(C) « NN_Set
if NN_Set " 1(C) is empty then P; « P; \ {C},
NN_Distance (C) « NN_Distance (Parent (C));
od;od;

C)\ {C}8;

co Find sites in other components looking in to each cell. oc;
for each P; do for C € P; do for D ¢ NN_Set" (C) do

if DE P;andi# 5 then NN_Set '(C) «— NN_Set'(C)U Ioohng_fn(D CY\ {D};
od;od; od

co Update nearest neighbor distances. oc;
for cach P; do for C € P; do for D € NN_Set ~1(C) do
New_NN_Distance (D) «— min {dmax(D, D') | D' € NN_Set ~1(C)};
New_NN_Distance (D) «— min{NN_Distunce(D), New_NN_Distance (D), dmax(C, D) };
od;od;od;

co Reset NN_Sile sets. oc;
for cach P; do for C € P; do for D € NN_Set "1(C) do
if New_NN_Distance(D) < NN_Distance(D) then
NN_Distance (D) < New_NN_Distance(D);
if D is a leaf then NN_Sites(D) «— {} fi;
fi;
od;od;od;

co Prune NN_Set 1. oc;
for cach #; do for C € P; do for D € NN_Set '(C) de
if d,5,,(C, D) > NN_Distance(D) then NN_Set '(C) « NN_Set ~(C)\ {D};
else if D is a leal and € is a leaf then ;
NN_Set '(C) « NN_Set” *(C)\ {D};
NN_Sites (D) « NN_Sites(D)U {C}
fi f;
od;od;od;

for each nonempty F; do Shrink(F;); ANN:(F;); od;
end;

Figure 3.5. Algorithm ANN ..

the celltree. Associated with cach quadtree cell considered is a celltree cell within
it. When a quadtree cell is strictly larger than its associated celltree cell, that
quadtiree cell has only one child. Thus a component P may have associated with it
a sct of celltree cells P that are much smaller, resulting from nonbranching paths
in the quadtree. Roughly speaking, the purpose of Shrink is to skip over these
nonbranching paths when conveniently possible. Let K be the diameter of the
largest cell in P’'. Then the cells resulting from Shrink(P) are those quadtree cells
of diameter K that have the cells in P’ as quadtrec descendents. These cells can be
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substituted for those in P, preserving the information contained in the NN_Set ™1
values. As a result of Shrink, the tree of cells touched by ANN . has O(n) nodes.
This fact is proven in §3.2.2 below.

Lemma 3.6. Algorithm ANN_ is correct.
Proof. The following fact will always hold for each component P input to ANN .:
For all C € P, the set

NN_Set '(C)U {D | C € NN_Sites(D)}

contains all sites that might have a nearest neighbor in C.

Here NN _Sites(D) denotes the leaf cells that are within NN_Distance(D) of D.
The invariant is certainly true initially, when P = {T'}. It must be shown that
when it holds for a component, it holds when the component’s child components
are input. Let P’ be such a child component, and C a cell in P’. We will show that
before ANN . is called for P’, this invariant will hold for C. Because the invariant
holds for P, the analogous fact holds for C when NN_Set™*(C) is first defined.
(This is certainly true for Parent(C) not a leaf cell, hence not in any NN_Sites (D).
If Parent(C) is a leaf cell, we assume C = Parent(C), in the sense that only the
size parameters of the parent are adusted to determine C. Thus C is in some
NN_Sites(D) if its parent is.)

We will show that a cell D is removed from NN_Set ~1(C) only when:
The cell D.= C and C is a leaf. A site is not its own nearest neighbor.

It is zeplaced by Looking_In(D,C). This preserves the invariant when P’ is
the input, by Lemma 3.5.

The value of d,,;,(C, D) is greater than NN_Distance(D). By its computa-
tion, NN_Distance(D) is always no smaller than the ncarest neighbor dis-
tance for any site in D. The removal of D in this case therefore preserves
the invariant.

D and C are leaf cells. In this case, C is added to NN_Sites(D), preserving
the invariant.

The cell C is removed from NN_Sites(D) only when NN_Distance (D) is to be made
smaller than a previous value: Note that D has NN_Siles(D) defined only when
it is a leal, and only C is added to NN_Sttes(D) only when it is a leal cell and
~ dyin(D, ) < NN_Distance (D). In this case, however, d,;, (C, D) is the exact dis-
tance between the sites in C and in D. By previous computation, NN_Distance(D)
is no more than that distance. Therefore, d,,;i,, (C, D) is equal to the current nearest
neighbor estimate for D when C is added to NN_Sites(D). When C is deleted, the
value of that estimate has improved, and it is known that C does not contain a
ncarest neighbor of the site in D. '
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The above invariant therefore holds for any C € P’, and is always true for any
component mput.

Since eventually the cells E with D € NN_Set™'(E) will all be leaf cells, it follows
inductively that after execution of ANN, for a component P, the set NN_Sites(D)
will contain all leaf cells E in P for which d,;, (E, D) = NN_Distance(D).

It also follows inductively that after execution of ANN, for a component P, the
value of NN_Distance (D) for any leaf cell D is no larger than the distance between
the site in D and its nearest neighbors in P. Here D is any leaf cell in P or in
NN_Set ™! (C) for some C € P. Therefore, after execution of ANN . for initial input
{T}, the set NN_Sites(D) will contain exactly those sites at NN_Distance(D) to
the site in D. This distance is the nearest neighbor distance to the site in D.
Therefore, ANN, is correct. 1

3.2.2 Running time analysis of ANN,

As discussed in the introduction to this section, to bound the running time of ANN
we will first prove the following.

Lemma 3.7. Algorithm ANN, requires O(1) time for every quadtree cell
it examines. '

Proof. The main fact required here is that when ANN . is called for a component P,
the size of NN_Set™*(C) is O(1) for every C € P. If this is true iitially, it will
be true for the initial value of the corresponding sets for the children of the cells
in P. Let D be a cell in NN_Set ™*(C), for C a child of a cell in P. Then the value
of NN_Distance(D) is computed as an upper bound on the distance of D to its
nearest neighbors in NN_Set ™ '(C). If the distance of D to C exceeds that upper
bound, then D is removed from NN_Set™'(C). Therefore, by Lemma 2.3, the size
of NN_Set_l(C) is bounded by a constant dependent on the dimension.

This fact allows an casy bound on the work performed for cach internal node ex-
amined by the algorithm. The work done for each cell C € P is at most quadratic
in lNN_Set-i(C) , and so is O(1). (The work of finding quadtree children, evalu-
ating Shrink, and finding necighbor-connected components is clearly lincar.) Kach
internal cell is examined in a call to ANN_. at most twice, as a child and then
as a parent. Therefore, the work done for an internal cell, as a member of some
neighbor-connected component, is O(1).

On the other hand, a leal cell may be examined many times. As noted, however,
the work done for a leaf cell in some NN_Set ™" (I), for some internal node I, may
be charged to that node. The other work done for a leal cell must be bounded,
however. If C in a component is a leal cell, and D is a leaf cell in NN_Set‘l(C),
then O(1) work is done before C is placed in NN_Sites(D). (A constant amount
of work may also be required when C is removed from NN_Sites(D).) Since leaf
cell C is removed from a component if NN_Set™'(C) is cmpty, it follows that a
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leaf cell is in a component at most twice, unless there is some internal cell £ with
Ee NN_Set_l(G). In this case, the work done for C may be charged to E. Since
internal cell £ has O(1) cells as nearest neighbors, the total charge to internal cells
in this way is O(1).

Thus the work charged to either leaf cells or internal cells is O(1), and the lemma
follows. n '

To complete the proof of a linear time bound for ANN ., we need to show that the
use of Shrink implies that the number of cells examined is O(n). This will be shown
to follow from the fact that if a component P has k cells, then Shrink(P) has at
least k£ + 1 descendents. Thus each cell in P has a “fertility” of at least 1 4+ 1/k.
If k is small, this value will be acceptably large. We will show that if k is large,
then k& must have had fertile ancestors. First, a technical lemmas:

Lemma 3.8. Let P be a set of k quadtree cells, all the same size, and let
S be a set of sites, with exactly one site for each cell of P. Each site is
constrained to lie somewhere within the boundaries of its cell. Let f(k) be
the minimum total L length of a set of arcs connecting the sites such that
the result represents a connected graph. Then f(k) > [k/2¢ — 1], measured
by the side length of a cell in P, for any such set of cells and sites.

Proof. The proof is by induction. The cases k& < 2¢ are trivially true. To prove
the result for & > 2¢, it will be shown that any connected graph for P can be
disconnected ‘into two connected graphs on two sets of sites, with a total path -
length savings of at least 1. This implies f(k) > f(m) + f(n)+ 1, for m+n =k,
which 1mplies the desired bound.

Given a connected graph on some k > 29 sites, with exactly one site inside each
cell of P, there must be two cells at least distance 1 apart, that is, separated by a
cell side length. This implies a situation like that shown below.

Leb

AN —
) s
%
4 S

Figure 3.6. The inductive step for Lemma 3.8.

There must be a path connecting a and b, and that path must cross the region
between hyperplanes A and B. Consider the portion of the path crossing this
region. If there is no site on this portion, it can be deleted, saving at least 1 side
length in distance.
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If there is a site s along that portion, then do the following: Delete the arc connect-
ing s to a’s component, and project s to the B hyperplane. Also project all the sites
in the path from s to the B hyperplane to that hyperplane. By so doing, a total
of 1 side length in path length is saved, using the L, distance measure. Therefore,
f(k) > f(m) + f(n) + 1, as desired. »

" Lemma 3.9. Let P be aset of more than 2¢ equal-sized quadtree cells. Let
P’ be the 2dth quadtree descendents of P. If P’ is neighbor-connected, then
1P| >2|P|

In other words, the ancestors of P’ up to its 2dth ancestors have average degree at
least 21/(2¢) > 1, For example, if P has 2¢ + 1 cells, then two of those cells must
be at least one side length away from each other. After 2d generations, with cells
of side length only 2724 of that of the cells in P, there must be at least 2 .24 41
cells for those cells to be connected. '

Proof. For any neighbor-connected set of descendents P’, there is a set of sites
and connecting arcs in P that is contained in P’. Since the total length of these
arcs is [|P| /2¢—1], and the maximum arc length contained in a cell of P’ is d/224,
it follows that the number of cells in P’ is at least [|P|/2¢ — 1]2%2¢/d > 2 |P|. «

Note that the lemma does not say anything about what can happen when P has
no more than 2% cells. In this case, a group of 2% neighbor-connected cells could
be arranged around a single point in d-space, and even if they have only one child
each, those children can still be connected. For the processing of ANN ., however,
the Shrink procedure guarantees the fertility of such small components.

Lemma 3.10. In the tree of cells examined by ANN ., a connected compo-
nent group P with k cells has at least k(1 + 1/2%) descendents after 2d + 1
generations.

Proof. Let P’ be a neighbor-connected group of 2dth descendents of P. If
|P'| < 2% then it will have 1 + 1/ |P"| > 1+ 1/2¢ children, yiclding the desired
number of descendents for its ancestors. If |[P'| > 24 and P’ has no more than
2¢ ancestors, then the result follows. If P’ has more than 2¢ ancestors, then the
fertility of thosec ancestors [ollows from Lemina 3.9. » |

From Lemma 3.10 it follows that the tree of cells examined by ANN. has O(n)
cells. Combining this fact and Lemmas 3.6 and 3.7, we get:

Theorem 3.11. Given the celliree for n sites, ANN, can be used to solve
the all nearest neighbors problem for those sites in O(n) worst-case time.



CHAPTER 4.
EXPECTED-TIME ALGORITHMS

§4.1 Introduction

In this chapter, algorithms will be described that are fast on the avcragé, assum-
ing that the input sites are random, that is, assuming that the input sites are
independently, identically distributed random variables.

If the input sites are on a line (so that d = 1), then the ANN and NFN problems
can be easily solved once the data are sorted. In this situation, it is possible to
sort the data in linear expected time with bucketing methods that use the floor
function. In such methods, addresses from 1 to n in random access memory are
calculated for the input values by normalizing them to lic in [1,n + 1), and then
truncating. The input values mapping to a given address, or “bucket,” are then
put in a list associated with that bucket, and these lists are sorted. If each bucket
contains O(1) input values, then the sorting operation requires linear time overall.
When the data values are smoothly distributed in some bounded interval, this will
be true on the average, and sorting takes linear expected time ([IS], [Knu], p. 105).

It may be, however, that the input data, although random, are not distributed
smoothly, and a bucket contains more than O(1) values on the average. For exam-
ple, a discrete distribution that is nonzero only for a finite number of values results
in buckets that are cither empty, or contain (n) values. Another bad case for
bucketing occurs when the probability density function (PDF) for the input values
has a “tail,” and is nonzero on an unbounded region. In this case, normalization
results in a large number of values in the small numbered buckets: Too much work
1s done for some large values, and not enough for small values.

Recently Devroye, and also Lucker ([Dev|[Lue|), have shown that these difficulties
can be at least partially overcome: By using a logarithmic transformation, the tail
of an unbounded distribution can be mapped to a finite interval, allowing bucketing
to work in O(n) expected time when the PDF f(z) is O(1/z17%), for some o« > 0,
as £ — o0o. Devroye has also shown that a [inite number of poles may also be
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allowed and still have a linear time bound, where a pole is a value a such that
f(z) = O(1/(z — a)*=P), for some B > 0, as = — a. (It is assumed that f(z) is
bounded elsewhere.)

In §4.2 below, it is shown that a celltree can be constructed in linear time, under
conditions analogous to those of Devroye. By using algorithm ANN . of §3.2, then,
it is possible to solve the all nearest neighbors problem in linear expected time,
under very broad conditions. In §4.3, it is shown that a MST supergraph can be
found in linear worst case time for the planar L; case, when a celltree for the input
sites is available. -

A more direct use of bucketing methods for closest-point problems has been made
by Bentley, Weide, and Yao [BWY]. In their work, sites are bucketed to equal-sized
cells, and the technique of spiral search is employed to solve the ANN and NGN
problems. In spiral searching, sites near a given site s, are found by looking at the
cells near to that site, “spiraling” out from it so that the closest unexamined cell
is examined next. If the sites are smoothly distributed, then O(1) cells will need
to be examined before a cell containing a site s, is found. Once this site is found,
only O(1) additional cells may contain a site closer than s; to sj, resulting in a
constant amount of additional work, since each cell will contain O(1) sites on the
average. This approach is heavily dependent on the smoothness of the distribution
of the input, since not only should each cell have O(1) sites on the average, but to
limit the cost of spiraling out, each should have £2(1) as well. Spiral searching has
been guaranteed to take O(n) time only when these conditions hold. On the other
hand, this technique applies to any dimension and L, norm.

When spiral searching is applied to the MST problem, the result is a linear-sized
MST supergraph, [rom which the MST must be computed. Ilere bucket sorting
provides a fast way to sort the GN graph edges prior to using Kruskal’s algorithm.
In §4.3, it is shown that lincar expected time is required to bucket sort the edges
resulling from a spiral searching algorithm, when the input sites are uniformly
distributed. The difliculty here is that while the edge weights are random in this
case, they are not independently distributed. It is therefore necessary to show that
they are not very correlated, and will not cluster together in buckets.
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§4.2 Building a Celltree in Lincar Expected Time

In this section, we will prove the following theorem.

Theorem 4.1. Suppose a set of sites is independently identically dis-
tributed. Further, suppose that the (unknown) probability density func-
tion f(z) for the sites is O(l/||m]|d“'L 1), as ||z|| — oo. Finally, suppose
that the PDF has a finite number of poles, where for our purposes a
pole is a point p and an associated neighborhood, with the property that
flz) =01/ ||z — pl|d~‘8), as ||z — p|| — 0, for some B > 0. Then under these
conditions a celltree for the sites may be constructed in linear expected time.
It will be assumed that the floor and logarithm functions are available at unit
cost, and the probabilistic algorithm of Chapter 3, for building a celltree,
will be used.

To describe an algorithm with such a lincar bound, a construction that is a “skele-
ton,” or framework, for a celltree, will be indicated. This skeleton will have the
following properties:

»there are O(n) leaves;
»cach leaf contains O(1/n) probability mass, unless the leaf contains a pole;
»the total mass contained in the tree is 1 — O(1/n);

it is possible in O(1) time to find the leaf, if any, in the skeleton tree that contains
a given site, using address calculation techniques requiring the floor function.

Using such a celltree skeleton, a celltree may be constructed in a two-phase process.
First, each site is bucketed in O(1) time to the skeleton leaf cell containing it.
Next, a celltree is constructed for cach leafl cell of the skeleton containing more
than one site, using the probabilistic celitree construction procedure of the last
chapter. Because of the properties above, the expected work for cach skeleton leaf
in building the celltree is O(1), except for leaves near poles. For those leaves, the
expected work is O(n), as will be shown below.

To construct such a celltree skeleton, it will be convenient to assume for the moinent
that the PDF is dependent on the L, distance to the origin, denoted r, and takes

the form i
124+ r<1;
J(r) = {1/d(2r]d+1, r>1.

By forming a celltree skeleton in which each leaf cell has ©(1/n) probability mass
for this distribution, it will guaranteced that there are O(n) leaves and O(1/n)
probability mass per leaf cell when the PDF is O(1/|jz||*™"). Let F(r) be the
function indicating the probability mass between 0 and » for f(r). Then F(r) is
simply 1 — 1/2r, for r > 1, so that the mass outside of the region with r < n/2 is
just 1/n. Within this region, we consider each layer n/25+! < r < n/2*, for integer
1 < k < |lgn]. Each such region contains mass 2°~1 /n, and can be partitioned into
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procedure Bucket_Celllree .
begin
for each site s do
7 |lofl o :
if r > n/2 then put s into bucket 0

elge if ¢ > 208 7m)modl then put s into bucket [lg(n/r)] —1
else put s into bucket |lgn]| fi fi;
od,;
for Layer_Number «— 1to |lgn| — 1 do
for each site s in layer Layer.Number do find the cell of the 2%(d + 1) that contains s od;
od;
for each large cell C in each layer Layer Number do
m «— |(Layer_Number — d — 1)/d];
Create a celltree with C at root, with m genecrations;
Create a d-dimensional bucket array B, each index from 0 to 2™ — 1;
Traverse the celltree, mapping leaf cells to their buckets in B and making a back pointer;
for each site s in C deo
bucket s into B, use backpointer to put s in its leaf cell od;
for each leaf cell of C do .
build celltree for sites in that cell using probabilistic Build_Celliree od;
od;

end;

Figure 4.1. Algorithm Buckel_Celltree

2%(2 — 1) equal-sized hyper-cubes. Hence if cach such cube is considered a celltree
node, its children after no more than log,s: 2%/2%(2¢ — 1) generations will have
©(1/n) probability mass each. The cube of sites with » < 2Usm)medl ¢hoyld also
be appropriately subdivided. The resultl is a celltree skeleton, and the verification
of the four properties above is straightforward. '

The resulting celltree construction algorithm is sketched in psendocode in Fig-
ure 4.2. It is clear that O(n) expected time is required for the algorithm, when no
poles are present. When a pole is present, it is no longer (rue that each leaf of the
skeleton tree contains O(1/n) probability mass, and the work for some leaf cells
will not be O(1). However, we will show that if Busld_ Celltree is used to build a
celltree within each leaf cell, then the time needed for the skeleton leaf cells around
cach pole will be O(n) on the average.

To prove this time bound, it will be shown, for fixed D > 0, that expected O(n)
total work is done for skeleton leal cells C that are Lo, closer to a pole p than D,
Let S be the collection of such cells in that neighborhood. Then we want to bound
> ces E(T(| Contents (C)|)), where | Contents (C)] is the number of sites y that fall
into cell C, and T'(|Contents(C)|) is O(|Contents (C)|log | Contents(C)]), the ex-
pected work done for [Contents (C)| sites. Lucker [Lue] shows that the expectation
can be pushed inside with O(n) cost, so

Z E(T(|Contents(C)|)) = Z T(L(

ces ces

Contents(C)|)) + O(n),

and we will bound the latter sum. Now divide the cells in S into layers, where
the layer of cell C is mingec |||z — pl|., /ni/’lj' Note that p is fixed, so that as n -
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goes to infinity, the volume of every cell in S is ©(1/n). Therefore, there will
be k = O(n'/%) layers, each with O(k%™!) cells. The probability mass contained
within L, distance r of p is O(r?), and there are O(1) cells in layers 0 and 1, so
the work done for cells in those layers is

0 (T (n (o) /nlfd)’s)) = O(n~#/logn) = O(n).

Assume, without loss of generality, that the PDF f(z) is monotonically decreasing
n ||z — p||,, for sites ||z —p||,, < D. Then the probability mass contained in a
cell in layer 5 is O(f(j/n!/?)/n), and the total work for cells in layers j > 2 is

Y. 0@ETT(mO(f(i/nM ) [n)),

2<j<Dinl/d
for some constant D', This is

| d—1 J = J o=
2 2; 4 (nlfd) IOg(nud)

2<;< D' nt/d

i\ i\

_ 1—-1/d

YECTEES (nw) 10g(nw)
1/d

2<j<D'n

!

D
= 3 nl_lmnlld/ 2P~ 1og 2P~ 4dz
1/nl/d

= O(n).

This completes the proof of Theorem 4.1. This proof follows that of Lucker of an
analogous bound for sorting.

§4.3 Using Celltrees for MSTs

In this section it is shown that a celltree may be used to find an MST supergraph
in O(n) worst-case time, for the Ly norm with d = 2.

The reduction in §2.3 from the MST to the NI'N problem can be applied to this
_ case. In that reduction, edges that will form an MST supergraph are found within
each of the neighbor-connected components of the children of a neighbor-connected
set of cells. Edges of the MST supergraph are then found between sites in different
child components. With a celltree for the sites available, the Shrink processing of
83.2 can be applicd to the components, so that by the reasoning of Lemuna 3.10,
only O(n) quad-tree cells will be examined over the course of the reduction. Since a
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constant number of MST supergraph edges are found for each cell in a component,
it follows that the MST supergraph found will have O(n) edges.

It is also necessary, of course, to bound not only the number of edges generated,
but also the total time solving NFN problems in finding those edges. In §4.3.1, a
simple algorithm for solving the nearest foreign neighbor problem in the L) case is
described, and an approach to bounding the total NFN solution time is indicated.

4.3.1 Finding NFN pairs using celltrees

As with the basic iterative NFN pair algorithm described in §2.2.1, we preprocess
the celltree so that for each cell, the sites in the cell closest to each of the four
corners of the cell are known. As with the basic algorithm, when applied to aligned
cells A and B the celltree NN algorithm first determines in constant time the
NI'N pairs for child cells that are diagonal from each other. The algorithm then
determines the NFN pairs for those child cells of A and of B that are aligned.
As these steps proceed, layers of pending cells will be maintained, for smaller and
smaller cell sizes. The diflerence here is that the children of a cell in a celltree may
be quite small relative to that cell, so that the pending layers will be of different
sizes. In general a group of pending cells will be as in Figure 4.2, with one large
cell limiting the amount by which the pending layer can narrow.

Figure 4.2. A row of pending cells.

However, only a constant amount of work is required to find the children of that cell
and process the resulting diagonal pairs. This yields two sets of pending cells. Thus,
the time T'(7, k) to compute the NFN is bounded by T'(ay,b,) -+ T'(az,b2) + O(1),
where j = a; + a; and k = b; + by, hence is O(7 + k).

In order to show that the total time spent solving NFN pair problems is O(n), -
the basic approach of §2.3.2 can be used, showing that the work per celltree node
(not quadtree node) is constant. As in §2.3.2, some modifications will be necessary
in the processing for finding the edges out of a component. To begin with, a
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simplification is possible: two equal-sized quadtree cells that are not adjacent need
not have more than one MST edge between them. Therefore, the edge-cells of
procedure Find _MST FEdges can be the cells of the child connected components.

Furthermore, any aligned row of cells in a child component need only have two edges
out to neighboring components. For example, in Figure 4.3, only one edge between
horizontally aligned H and H' is necessary in an MST supergraph. Suppose two
edges, as shown, are nccessary. Since the length of line segment ce is less than
one (cell side length), and the length of eb is greater than one, the L, distance
between a and ¢ is less than that between a and b. Therefore, the edge between a
and ¢ is not longest in the 4-cycle shown, and by symmetry, the edge between b
and d is not longest either. It follows that the longer of the two edges {a,b} and
{c,d} is a longest edge in a 4-cycle. Therefore, only one MST supergraph edge is
necessary between H and H', by Fact 1.3.

H H

Figure 4.3. Only two edgés are needed out of aligned rows.

It follows that when processing the edgc-cell pairs required by Find_MST_Edges
for a component, the cells in a child component may be organized into horizontally
and vertically aligned groups, and two edges found out of ecach group. When pro-
cessing I and H', the NI'N algorithm could begin with the pending layer consisting
of those two groups, and process them all jointly.

We need to show that these modifications climinate the need for the pruning step
of §2.3.2. That is, we must show that work done for each cell in the celltree is
bounded by a constant. Consider the NI'N algorithm step splitting one horizontal
layer into two, as in Figure 4.2 shown above. Let the largest cell C in that layer
be charged with the (constant) work of splitting the layer in two. No future calls
in which C is examined will come from the other cells in the horizontal layer.
Furthermore, no sites of the horizontal row containing A can be in the cone indicated
with apex at C. If there were, such sites would be closer to the cells in C’s layer
than C is, and the current NI'N estimate would exclude C from consideration. Also,
NFN calls involving C cannot come from cells diagonal to A, as such calls can be
answered in constant time. Thercfore, as in §2.3.2, there is a region from C that
cannot contain any points that will result in an NI'N call examining C. Thus, the
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number of times that a cell can be charged over the course of the MST' algorithm
is bounded by a constant, by an argument similar to that suggested in §2.3.2.

§4.4 Finding MSTs Using Bucket Sorting

4.4.1 Sorting edge weights by bucketing

In the previous two sections, rather weak conditions on the PDT of the input sites
allowed the construction of a celliree for those sites in linear éxpected time. In
this section, we will make the much stronger assumption that the input sites are
independently, uniformly distributed in the unit d-cube. As discussed in §4.1 above,
under such conditions, an effective method of finding an MST supergraph is to find
a geographic neighbor graph using spiral search. We will show that the resulting
GN graph edges may be sorted by weight in linear expected time in this case, if
the loor function is available. This will allow Kruskal’s algorithm to find the MST
from the GN graph in O(na(m,n)) time. :

To simplify the analysis, we separately sort the edges resulting from each search
direction (each cone defining the GN graph), and then merge the resulting lists in
O(n) time. To sort the edges for a cone C, put an edge with weight w into bucket
nuimber

k= [nexp (-—'wd(n — 1)V¢)].

Here Vi is the volume of the region consisting of those points of C that are closer
than 1 to the origin. It will be shown that each bucket will contain O(1) edges on
the average, and that sorting the sdges within each bucket will require O(1) time,
even if a quadratic-time sort is used. To sce that the former statement is true,
observe that all edges in bucket k will have rp_1 > w > rr, where

tu(u/k) )M .
Te = {((ﬂ.—-l}v;;) } k> O’
00, k=0.

Thercfore the probabilily that an edge [or a site s falls into bucket k, so that the
closest site to s is closer than r;_; and farther than rg, is

Prob{no site [alls within rx} — Prob{no site lalls within r;_;},

which is bounded by (1 — Vcr}f)"“'l — (1 - Vc'r;f_l)““l, or

—(n—1)Verf ~(n—1)Verd ln.2 1)
(e CTkx — g CTh 1) 1+ O - ,
2 - 2
= 1
mn mn n n n

which is
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(Note that although the above applies only for & > 1, the & = 1 case [ollows
similarly. Also, a site may be near a boundary of the containing cube, so that the
corresponding region for bucket k is not contained in the cube. In this case, the
above probability for an edge in bucket & is just an upper bound. Since less work is
done for an edge that is not present, this condition will be ignored in the following.)

Thus O(1) edges on the average will fall into bucket k, for cach k. However, this
does not imply that sorting the edge weights will require lincar time, since the edge
weight values are not independent random variables. In the next section, we show
that despite this the sorting process takes linear time.

4.4.2 Analysis of the edge weight sort

As in §4.3.2, let y, denote the number of edges falling into bucket k. The time
required for sorting the cdges by weight is O(Elgkgn 'y%), and we want to show

that for each &, the average sort time ;E is O(1).
For fixed k and for site s;, 1 <7 < n, let z; be an indicator variable [or bucket k.

Let z; take the value 1 if the edge weight for site s; is in bucket %k, and the value 0
otherwise. Then
2
yE = Zf)

i
o
&
e
+.
b
N
po 3
S’
-
E 3

il
2
L
+
b

.A\

o 3

N
*

where ¢ is the probability that z; = 1, and ¢* is the probability that z; and z; are
both 1. The former was shown to be O(1/n) in the last subscction, but it remains
to show that ¢* = O(l/ﬂg).

Belore proving this, we need a bit ol notation. Let C; denote the translation of C to
have apex at s;. Lel A; denote the region in C; with points closer than ry to s;. Let
B denote the region in C; of points larther than 7y and closer than rp—y. Let Cy,
A; and B, denote the corresponding regions for site s;. IMinally, let /*(12) denote
the condition that region R contains a site, and IZ(12) denote the condition that I
does not contain a site. In this notation, for example, the chance that z; =1 is

Prob{E(A;)}Prob{F(B;) given E(A;)},

since this occurs when there are no sites in A; and at least one site in B;.
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When proving ¢* = O(1/n?), we may assume that site s; is not in A;, since then
the edge for s; cannot [all in bucket k. Also, the chance that s; falls in B;, with A;
empty, is less than the chance that any site does, and hence is O(1/n). Since the
chance that the edge weight for s; falls in bucket k is in this case independent of
where the edge for s; falls, we have ¢* = O(1/n?), if s, falls into A; or B;. Similarly
#* = O(1/n?) il the edge for s; falls into A; or B;.

To complete the proof that ¢* = O(1/n?), we will show that ¢;; = O(1/n),
where ¢;); is the probability that z; is 1 given that 2; is 1. By the above reasoning,
we can assume s; is not in A; or B;, and vice versa.

To show that ¢;; = O(1/n), we express it as a sum, based on the value of the
distance D,; between sites s; and 3;:
¢51i = Prob{D < Dy; < 2rr_1}¢
+ Prob{D;; < D}Qs;fl‘.
+ Prob{2r,—1 < D;; }O(1/n)
< 2Werg_ ¢ + C' DY+ O(1/n).

ili -

!
7l

Here D is a value depending on & that will be chosen to make the first two summands
above O(1/n), and C' is a constant dependent on d.

In order to make an appropriate choice for D, we must estimate the probability ¢;'|:'=
which is the value of ¢;; given that D;; is between D and 27, ;. Il 2; is in fact 1,
then the chance that z; = 1is increased, since it is guaranteed that A;NA; contains
no sites. We have

#,: = Prob{B(A; \ A;)}Prob{F(B;) given E(A; U A;), F(B:)}
which can be weakened to |

@' < Prob{I2(A; \ 4;)}.

Jlt =
These probabilities are of course conditioned on D < D;; < 2ri_;. The chance
that z; = 1, without the condition that z; = 1, can be expressed as

Prob{E(A; \ A;)}Prob{E(A; N A;) given IF(A; \ A;)}Prob{FF(B;) given I(A;)}.
Since this value is O(1/n), it follows that

) O(1/n)
~ Prob{E(A; N A;) given E(A; \ A;)}Prob{F(B;) given E(A;)}

#j1s

Since Prob{F(B;) given E(A,)} > Prob{['(B,)}, we have

O(1/n)

!
g < .
Pili < Prob{E(A; N A;) given E(A; \ A;)}Prob{F(B;)}
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The probability that a site appears in region B; is, for k > 1,

1 — Prob{no site appears in B;} =1 — (1 — Vol(B,))" 2
k—1
152114 0(1/m)

Also, Prob{E(A; N A;) given E(A; \ A;)} is

(1 _ VDI(Al N AJ)

n—2
(1 = Vol(4, \A:))) = exp(—nVol(4; N 4,))(1 + O(lnn/n)).

In §4.4.3 below, the following is proven.
Lemma 4.2. For sites s; and s; with D;; > D,
Vol(A; N A;) € Verg(1 — C1D/ry + Co(D/ri)?),
for appropriate positive constants C; and Cs.

Therefore, letting R = D/ry,

o< 1/n
gl = lexp(—nVol(A; N A4;))(1 +O(Inn/n))][1/k(1 + O(1/n))]
< g exp{riVlerd(l — O R+ Col DL+ Ot f))
= oxp(—Cy RIn(n/k) + C2R* In(n/k))(1 + O(Inn/n)),

so that

Inn/k
T}:—l‘f’}u = /

exp(—CyRIn(n/k) + CoR* In(n/k))(1 + O(ln n/n))

nve

s O(% exp(Inln(n/k) — CiRIn(n/k) + G lt? In(n/k))(1+ O(lnn/n)).

Setting D = 1/n'/4, so that R = Q(1/(In(n/k))'/?), the above expression becomes
O(1/n), as does D?. Thercfore ¢;; is bounded by O(1/n), implying that cach y?
is O(1), so that the described sorting algorithm is indeed linear.

4.4.3 Proof of Lemma 4.2,

In this section, we will prove Lemma 4.2 concerning the volume of 4, N A;. A few
assumptions can be made concerning these cones: Each C € F' is convex, and has
nonzero volume. Choose a coordinate system for proving the lemma for cone C
such that site s; is the origin, so A; will be denoted simply A. Also choose the
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coordinate system so that one coordinate, denoted z, has a unit basis vector e,
with e, € C. By symunetry, we may assume that site s; has a positive z coordinate,
and has the form s; = ae; + 2,e,, where e; is a unit vector in the z = 0 hyperplane.

For region £ C R*, and t € R, let t€ = {tz |z € €} Forpe Nt let £ +p =
{z+p|ze}. Now since C is a convex cone, it may be represented as

>0
where § is a convex region in the z = 0 hyperplane. Let

tmax = max{t | t(S +te.) C A}.

Let A" = Uj<s<s,,., t(S +te:). Instead of bounding AN A;, we will bound A’ N A%,

where A} denotes A’ 4 5;. The following lemma suggests that this is reasonable.
Lemma 4.3. There is a constant A such that Vol(A') = AVol(A).

Proof. Let B, = {z | ||z||, < r}. Then A = B, NC,but B,, =rB;,and r,C =C,
so A = r(B) N C). Therefore ty,.x is linearly proportional to ry, so that

tm nx

Vol(A') = / Vol(t8)dt =t Vol(S§)/d = Cyr{Vol($),
0

where C) is some constant. (Here Vol(£S) means volume of § in the z = 0 hyper-
plane.) Furthermore Vol(A) = r{V¢, so the lemma follows. u

Lemma 4.4. Vol(A' N A}) is maximized for z; = 0, that is, with s; in the
z = 0 hyperplane.

Proof. Note that A’ = Un<i<it,n t{S -+ ae; -+ (¢ -+ 2;7)e.). Furthermore, since § is

convex and the origin 0 is in S, it follows that a§ C S for a < b. Therefore
(8 —2;)(§ +ae; +te,) C S + ae; +te;)

for ¢t > z;. Using this fact, and the fact that

Al’ﬂA;- = U L(S +te;) N (L —2;)(S + ce; + te,),

<5 Ststmux

the lemma follows. ®

In the following, we will assume z; = 0, so s; has the form s; = ae;. Let §;, =

SN (S + ce;). Now Vol(A' N Aj) = f(;“‘"" Vol(t$;,.)dt, so we want to bound the
volume of §; ,. . |
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Let H; denote the (d — 2)-dimensional hyperplane in the z = 0 hyperplane that is
perpendicular to e;. Let 7} denote the projection of § on Hj, and let 7}, denote
the projection of §; , on H;. Since § is convex, it may be written

§={z ;|' ye; | 2 €T5,0 €ER, fiowls) € ¥ L fugn(z)}-
for suitable fiow and fuign defined on Tj. Now let
I ={z+ye; |z €T;,y € R, frign(z) <y < fuign(z) + a},
and |

IZZ = {:E +ye_‘f | xC T}':y € m: fhigl:(m) <y < flow(x) +a}
Then (§ + s;) Uz = §;,4 U, and these are disjoint unions. Therefore

Vol(§,,o) = Vol($§ + s;) — Vol(I}) + Vol(I,),

and

Vol(tS;. o) = Vol(¢(S + s;)) — Vol(tI,) + Vol(tI;) (4.1)

Lemma 4.5. Vol(tI,) = af;Vol(tS§)/t, for some value f;.

Proof. Plainly Vol(tI;) = aVol(¢T}), and since Vol(tS)/Vol(¢T;) = f;t for some
B; depeading on e;, the lemma follows. a

Lemma 4.6. Vol(tl;) = a%+;Vol(t§)/t2, for some value ;.

Proof. Let g(z) = flim(z) — fiow(2), for z € T;, and let g7 (y) = {z | 9(z) = y}.
Then by elementary calculus,

Vol(Iy) = /:(a — w)SA(g— (w))dw,

where SA(E) denotes the surface area in IH; of surface £,

Now ¢~ '(w) is a subset of the boundary of T} ,,. In particular, g71(0) is a subset
of the boundary of T}, which can be proven as follows. Il there is a point p in
the interior of T} with g(p) = 0, then g(z) = 0 for all z € T}, contradicting the
assumption that C, and so §, has nonzcro volume. Suppose g(p) = 0 for some point
p in the interior of 7%, but g(z) +£ 0 lor some z € 7. Then since p is an interior
point, there is some point s such that p is a convex combination of az + bs. Now
since g(zx) # 0, there are two points z’ and =" in § with the same projection z, but
© with different e; components. There is also a point 5" € § whose projection on FI;
is 5. Now az; + bs' and azg + bs’ are both in §, and both project to p, yet they
have distinct e; components. This contradicts the assumption that g(p) = 0.

A similar argument shows that ¢~ (w) is a subsct of the boundary of 7} ,,. From
this fact it lollows that SA(g~!(w)) < SA(T}.w). Now since T}, € Ty for w >0,
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and Ty and T, are convex, it follows that SA(T};,) < SA(T;). Therefore,
SA(g~(u)) < SA(Ty), so

X

Vol(I,) < / (o — w)SA(T;)dw < ?SA(T}).

But Vol(¢S)/SA(tT;) = ~;t* for some constant ; dependent on ej, so the lemma
follows.

Putting Lemmas 4.5 and 4.6 together with (4.1), we have

Vol(t5;.4) < Vol(tS) —

af;Vol(tS)  a?y;Vol(t$)
i @

Therefore
af; Vol(A') + a?~,;Vol(A")

; 2
txnax |t:nrm:nc

Vol(A' N A}) < Vol(A") —

Now by an argument similar to that for Lemma 4.3, the minimum value
Cmin = min{a | s; = ce;,s; ¢ Bp UC}

is linear in D. As noted, tax is lincar in rg, hence

Vol(A' N A}) < Vol(A') -

DO Vol(A') | D*Cury; Vol(A')

Tk ?‘E ’

for suitable constants Cy and C4. This bound depends on s;, however. By mini-
mizing §; and maximizing y; with respect to e;, we have

_ DC;Vol(A") 3 D2CsVol(A')

7L T;i ’

Vol(A' N A%) < Vol(A')

for suitable positive constants Cs and Cg. Since A;\ (ANA;) D A;' \(4'n Aff)’ it
follows that
Vol(A N Aj) < Vol(4;) — Vol(A%) -+ Vol(A' N A;)

Lemma 4.2 follows from this fact and the above bound for Vol(A' N A}). ]



CHAPTER 5.
SUMMARY AND FURTHER QUESTIONS

§5.1 New Ideas and New Applications of Old Ideas |

While the asymptotically faster algorithms presented are of interest themselves,
it is important to emphasize the main ideas underlying their development. The
highlights of this work are the following:

»The use of “scaling” approximation algorithms for the all nearest neighbors and
nearest foreign neighbors problems.

»The analysis of the total cost of solving the necarest foreign neighbor problems
arising in solving the minimum spanning tree problem. This analysis involved
“charging” quadtree cells for operations involving them, and bounding the total
charge per quadtrec cell using a gcometric condition.

»The use of random sampling in a divide-and-conquer algorithm. This idea is of
course quite old, but this application of it, to split up a problem in many dimensions
at once, is perhaps distinctive,

»The use of bucketing to sort dependent data.

»The use of the quadiree data structure for manipulating point data. Quadtrees
have proven quite uselul for many geometric problems (Samet, [Ros|, p. 212) but
more commonly for representing volumes or regions, rather than for point data.
Furthermore, for many uses of quadtrees performance guarantees are limited, and
few algorithms with better asymptotic performance have been devised using them.

»The use of a new data structure, the celltree, This variant of the quadtree may well
prove uscful for other applications. Celltrees require linear space, unlike quadtrees,
yet in a sense maintain geometrical information more accurately than k-d trees.
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§5.2 IMurther Questions

Perhaps the most significant idea to emerge from this work is that of a “scaling” ap-
proximation algorithm. Such an approach should prove quite useful for the nearest
foreign neighbor problem with other L, norms. In particular, a O(n logo(l)(l/e))
algorithm for the Euclidean case surely exists. Closely related to the NI'N prob-
lem is the diameter, or farthest pair, problem, in which a pair of points in a set
is desired realizing the farthest distance apart for all such pairs. This problem, so
similar in statement to a closest pair problem, seems to be much more difficult.
Another class of problems for which a scaling approach is imaginable is that of
range querics [Knu|. Still more difficult problems for which a scaling approach is
conceivable are the post oflice probiem and linear programming. While Khachian’s
algorithm ([Khal, [PS], p. 170) approximates a solution to a linear programming
problem, it is not a scaling algorithm. Such an algorithm might, lor example, use
approximate versions of the inpul constraints and objective function, increasing
accuracy in these approximations as a value closer to optimal is found. Gabow’s
results [Gab] on special cases of linear programming, such as network flows and
matching, suggest that a scaling algorithm may exist. Still another area with pos-
sibilities is that of location problems, such as the smallest enclosing circle problem

[Shal.

A very important question concerning these results is the behavior of these algo-
rithms in practice. The scaling algorithms are simple enough that they are very
likely to be useful in appropriate applications. The other algorithmms, while more
complex, may also be useful.

The chiel impediment to the application of these new algorithms may be a problem
plaguing many geometric algorithms, the “curse of dimensionality” ((GMW], p. 93).
The algorithms all have a running time that is at least exponentially dependent on
the dimension. In some cases, this is unavoidable. Ifor example, the all ncarest
neighbors problem, as it is stated, can have an output exponentially large in the
dimension. This might be alleviated by, for example, using only some of the coor-
dinates to determine distance measures, choosing the coordinates perhaps on the
basis of variability. Iiven the algorithms with good expected times, however, have
run times exponentially increasing in the dimension.

The celltree data structure has been shown to be uselul for closest-point problems.
Is it possible to construct one without using the bitwise cexclusive-or function?
Clearly the numerical least common ancestor funclion can be implemented by using
multiplication by powers of 2 and the lloor function. Is there some more clegant
way to perform this operation, or avoid the need for it? The celltree approach
seems to be less attractive when the performance measure counts the number of
bits examined, and not the number of operations on coordinates. Is this inevitable?
I'inally, the analysis of the algorithm for building a celltree can be tightened in a
number of ways. Because of the repeated sampling at cach step, the variance of the
run time of this algorithm should be small, perhaps O(n) as with quicksort [Knu].
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The bucket sorting of dependent data in this sitvation leads to questions concerning
other conditions for which bucket sorting might require linear time. A problem with
bucketing methods is that the running time of the algorithms, though linear in the
number of points, has a constant factor that is dependent on the distribution. Can
this dependence be characterized, or ameliorated using “adaptive” methods that
gather information from the input points, as in Weide’s and in Chapiro’s work

([Wei][Chal)?
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