Randomized Parallel Algorithms for Trapezoidal Diagrams

Ken ClarksonRichard ColeRobert E. TarjanAT&T Bell LabsCourant Inst.Princeton Univ.,Murray Hill, NJNew York Univ.NEC Research Inst.

Outline

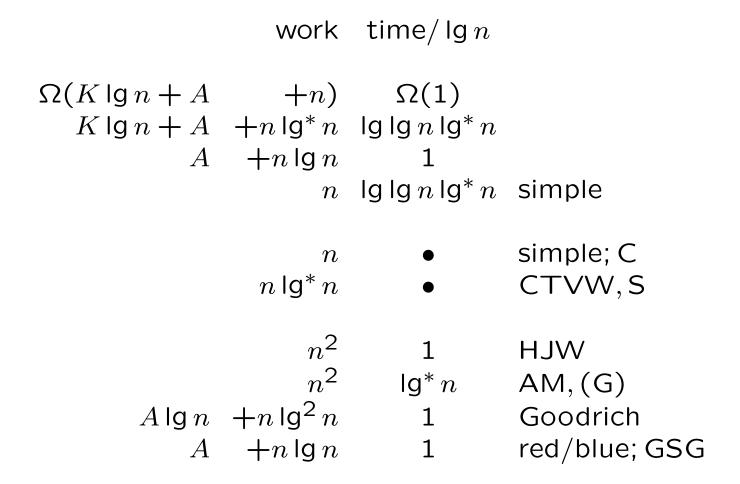
- Trapezoidal Diagrams
- Results
- Ideas
- Conclusions

Trapezoidal Diagrams

Given set S of n line segments, with A intersection points, its TD $\mathcal{T}(S)$ has $\Theta(n + A)$ regions.

Results

Suppose S forms K known chains. How much work is needed to find $\mathcal{T}(S)$, and how quickly can the diagram be found?



The Model

Expected work and worst-case time implies processors are expected? CREW PRAM,

processor allocation every $\log n$ steps

Randomized divide-and-conquer [CS]:

- take $R \subset S$ random of size r;
- compute $\mathcal{T}(R)$;
- for $T \in \mathcal{T}(R)$, find segments S_T meeting it (insertion);
- compute $T \cap \mathcal{T}(S_T)$ for $T \in \mathcal{T}(R)$;
- merge pieces to find $\mathcal{T}(S)$;

We can use "slow" algorithms for $\mathcal{T}(R)$ and the $T \cap \mathcal{T}(S_T)$, since:

Each trapezoid meets O(n/r) segments, on average, and $O(n/r) \log r$ with high probability.

For parallel work $O(A + n \log n)$, use Goodrich's algorithm to compute $\mathcal{T}(R)$, and a quadratic algorithm like [HJW] for subproblems. Serially, for simple chains: to insert, walk through $\mathcal{T}(R)$ and S;

This gives $O(n \log \log n)$ expected time, with $r = n/\log n$ and average subproblem size $O(\log n)$.

For $O(n \log^* n)$ work: For subsets $S^1 \subset S^2 \subset \cdots \subset S^{\log^* n} = S$, with $|S^1| = n/\log n$, $|S^2| = n/\log\log n$, $|S^i| = n/\log^{(i)} n$, compute $\mathcal{T}(S^i)$ using $\mathcal{T}(S^{i-1})$. In parallel, the insertion is done by many parallel walks through subchains.

The main problem: while every trapezoid of $\mathcal{T}(R)$ meets few segments,

a segment may meet many trapezoids.

How to handle *bad* segments that meet $\Omega(\log n)$ trapezoids?

There are $O(n/\log n)$ bad segments, on average: to insert them, compute their intersections with the visibility edges using algorithm [GSG].

Conclusions

- realistic machine models;
- determinism;
- simple O(n) triangulation?